Sr4Al2O7:Re3+, R+ (Re=Eu、Dy; R=Li、Na、K)荧光粉的溶胶-凝胶法制备及其发光性能,张文涛,候世欣,利用溶胶-凝胶法制备出碱金属电荷补偿的Sr4Al2O7:Eu3+/Dy3+荧光粉,并详细研究了该Sr4Al2O7:Re3+, R+ (Re=Eu、Dy; R=Li、Na、K)系列荧光粉的结构与� 《溶胶-凝胶法制备Sr4Al2O7:Re3+, R+ (Re=Eu和Dy; R=Li、Na、K)荧光粉及其发光性能研究》 本文详细介绍了通过溶胶-凝胶法(Sol-gel method)合成Sr4Al2O7:Eu3+/Dy3+荧光粉,并添加碱金属作为电荷补偿剂(R=Li、Na、K)的过程。这些荧光粉因其在白色发光二极管(white LEDs)中的潜在应用而受到关注,因为它们能够提供高效、长寿命和环保的照明。 溶胶-凝胶法制备是一种常见的无机材料合成方法,它具有精确控制成分、均匀混合、易于实现纳米级粒子以及低温成型等优点。在此过程中,原料首先形成溶胶,随后转化为凝胶,最终经过热处理得到固态产物。这种方法对于制备复杂氧化物如Sr4Al2O7:Re3+, R+具有显著优势。 研究表明,经过1400°C的高温处理后,所合成的样品具有与标准Sr4Al2O7相匹配的结构。在紫外光(UV)激发下,所有Sr4Al2O7:Re3+, R+样品显示出550nm到700nm范围内的几个窄发射峰,这是由于Eu3+离子的4f→4f跃迁引起的。同时,这些荧光粉都表现出492nm和582nm的两个发射峰,分别对应于Dy3+离子的4F9/2→6H15/2和4F9/2→6H13/2跃迁。这些特性表明,这些荧光粉具有良好的发光性能。 特别值得注意的是,添加碱金属电荷补偿剂显著提高了Sr4Al2O7:Re3+, R+荧光粉的发光强度,这为使用UV芯片的白光LED提供了更好的选择。这是因为碱金属离子的存在可以调整晶体结构,改善激发和发射过程,从而提高发光效率。 白色LEDs的广泛应用,如室内照明、汽车照明、显示屏等,对荧光粉的需求日益增加。 Sr4Al2O7:Re3+, R+荧光粉的优良性能,尤其是其在UV激发下的多色发射,使其成为制备高质量白光LED的理想候选材料。通过进一步优化合成条件和掺杂比例,有可能实现更高效、更稳定的白光发射,这对于推动LED技术的发展具有重要意义。 关键词:材料科学;Sr4Al2O7:Re3+荧光粉;光致发光;电荷补偿;溶胶-凝胶法。
2025-10-23 20:40:33 835KB 首发论文
1
溶胶凝胶法合成Dy3+离子掺杂的二氧化锆及其发光特性研究,潘跃晓 ,,采用溶胶凝胶法合成Dy3+离子掺杂的单斜与正交的二氧化锆晶体,研究了结晶温度、时间、Dy3+离子浓度对氧化锆结构的影响。比较研究了D
2025-10-23 19:40:50 324KB 首发论文
1
溶胶-凝胶法制备的(Mg,Al)共掺ZnO粉体的结构与光学性能,段利兵,赵小如,本文采用X射线衍射、扫描电镜、紫外-可见吸收谱、光致发光谱以及拉曼散射光谱等手段对溶胶-凝胶法制备的1%Al掺杂Zn1-xMgxO (x=0-8%)粉�
2025-10-23 18:01:00 603KB 首发论文
1
根据提供的文件内容,我们可以梳理出以下知识点: 1. 偏锡酸锌薄膜制备方法:偏锡酸锌薄膜是通过溶胶-凝胶(Sol-gel)技术制备的。溶胶-凝胶法是一种低成本的薄膜制备工艺,能够将多种氧化物薄膜沉积到不同衬底上。该技术特别适用于基于薄膜电性能变化的气体传感器结构的制造。 2. 研究背景与应用:偏锡酸锌薄膜对氮氧化物(NOx)气体和湿度具有灵敏性,因而受到了越来越多的关注。由于偏锡酸锌(Zn2SnO4)具有广泛的应用领域,如气体传感器,其性能备受研究者关注。 3. 实验与研究材料:实验中使用了醇作为溶剂,并以锡氯化物(SnCl4)作为主要原料之一。SnCl4的纯度高达99.9%,在制备溶胶的过程中起着关键作用。 4. 研究团队与贡献:文章的作者张海娇与焦正分别来自上海大学环境与化学工程学院,张海娇为副教授,主要研究方向为介孔功能材料;焦正为教授,主要研究领域是环境功能材料。他们的研究对偏锡酸锌薄膜的表征和性能分析做出了贡献。 5. 研究发现与讨论:研究发现,通过不同温度处理偏锡酸锌薄膜,其结构会发生变化,从非晶态转变为六方晶结构。通过扫描电子显微镜(SEM)的观察,证实了温度升高会导致薄膜结构的变化。此外,文章还对偏锡酸锌薄膜的气敏特性进行了研究。 6. 文献引用:研究中引用了其他学者的研究成果,如Enoki和Minami分别通过射频磁控溅射技术沉积了Zn2SnO4薄膜。Matsushima等人描述了使用Zn2SnO4粉末和聚乙烯醇溶液制成的浆料来制备厚膜。这些研究者的工作表明,他们制备的薄膜具有良好的二氧化氮(NO2)气敏特性。 7. 关键词:通过文中关键词“Zinc-Stannate”、“Thinfilm”、“Sol-gel”和“Gassensitivity”,我们可以知道文章的研究重点在于偏锡酸锌薄膜的制备、结构表征以及其气体敏感性。 综合以上信息,我们得知,该研究不仅介绍了偏锡酸锌薄膜制备的新方法,而且还对其结构和性能进行了详细的分析和讨论,从而对其在气体检测领域中的应用前景提供了科学依据。通过溶胶-凝胶技术制备的薄膜能够在不同衬底上形成,并且通过改变处理温度可以调控薄膜的微观结构,这对于气体传感器的设计和优化具有重要意义。此外,由于偏锡酸锌薄膜的气敏特性,这类材料可以被广泛应用于环境监测和健康安全领域。
2025-10-23 16:14:10 293KB 首发论文
1
溶胶凝胶-原位碳化法制备纳米碳化钨及Pt/WC复合催化性能,熊仁金,周大利,以酚醛树脂(PF)作为碳源,采用溶胶凝胶-原位碳化法合成纳米碳化钨(WC),并以硼氢化钾(KBH4)还原氯铂酸(H2PtCl66H2O)制得了Pt/W
2025-10-23 14:18:17 909KB 首发论文
1
Sol-gel法制备厚膜浆料用玻璃粘结剂,王宇,,采用溶胶-凝胶工艺制备出了适合AlN基片用厚膜浆料中的CaO-B2O3-SiO2-BaO四元玻璃粘结剂。利用TG-DSC、XRD、SEM等分析手段对玻璃粉体的制备进
2025-10-23 12:13:20 585KB 首发论文
1
包含纳米CoSb3的Yb0.15Co4Sb12基复合材料的合成和热电性能,糜建立,赵新兵,在块体材料中引入纳米组元构建微纳复合材料是热电研究的一个新方向。本文合成了包含纳米CoSb3的Yb0.15Co4Sb12基复合材料,系统研究了不
2025-10-22 22:28:30 478KB 首发论文
1
SiC含量对ZrB2-SiC 纳米复相陶瓷力学性能的影响,刘强,韩文波,A ZrB2-SiC nanocomposite that introduced nano-sized SiC particle (SiCnp) into a ZrB2 matrix was fabricated by hot-pressing at 1900 C for 60min under a 30MPa uniaxed load. The compo
2025-10-22 21:14:34 734KB 首发论文
1
Preparation and Performance of Wheat Gluten Composite Membrane by Intermingling Nano-Silver,李颖,刘润聪,Nano-particles have small size, surface and interface, quantum size, macro-tunnel effect and other special characteristics.To obtain wheat gluten membranes with a good strength, na
2025-10-22 19:50:14 185KB 首发论文
1
本篇论文介绍了一种新方法,用于制备纳米级的NbC/Fe复合粉末和纳米颗粒强化铸造低碳钢。该方法结合了机械合金化和热处理技术来制备纳米级的NbC颗粒与铁粉的复合粉末,然后在冶炼铸造过程中添加这种复合粉末以制备纳米级碳化物颗粒强化的铁基材料。通过这种方法,得到了可以均匀分布在铁基体中的纳米NbC颗粒,并且显著细化了铸造微观结构,并提高了硬度。 关键词包括机械合金化、纳米NbC颗粒、铸造、颗粒强化复合材料和钢。 在引言部分,作者首先介绍了纳米级颗粒作为强化相能够显著提升铁基材料的强度、硬度、耐磨性和抗磨损性能。因此,纳米级颗粒强化的铁基材料受到了极大的研究关注,并且潜在的工业应用前景广阔。为此,探索和提出了基于固态或液态基体状态的不同制造路线。其中,加入外加纳米级颗粒的铸造过程是非常重要的一种方法,主要是由于成本和处理方便的考虑。此外,纳米级颗粒可以作为一种改质剂来细化微观结构,并相应地提升钢材的机械性能。 为实现外加纳米级颗粒强化铁基材料的制备,需要这些颗粒易于并且均匀地分布在熔融金属中,以便在体积局部过冷和体积结晶条件下的均匀分布。研究中,机械合金化和热处理被认为是制备纳米NbC颗粒的有效方法。通过机械合金化和热处理,可以将纳米NbC颗粒均匀地分布在铁基体中,从而显著细化铸造后的微观结构,并提升材料硬度。 作者们来自两个不同的学院,分别是燕山大学材料科学与工程学院,以及河北科技大学材料科学与工程学院。他们为科学论文在线平台提供了一篇首发论文,探讨了通过机械合金化和热处理相结合的新型制备方法。研究者们认为,制备出的纳米NbC/Fe复合粉末以及添加这种复合粉末后制备出的纳米级碳化物颗粒强化的Fe基材料,在未来具有重要的工业应用潜力。 该研究的成果体现了对传统材料科学的改进,通过纳米技术增强了材料的特性。在材料科学和工程领域,纳米技术的进步为开发新材料和改良现有材料提供了新的途径。强化铸造铁基材料,尤其是通过引入纳米级颗粒,可以显著改善材料的力学性能和耐久性,这对于机械制造、汽车工业和许多其他行业来说是具有深远影响的技术进步。 研究中提出的机械合金化方法是一种制备金属或金属基复合材料的粉末冶金技术,通过在高能球磨机中将不同成分的粉末混合,从而得到微观结构均匀、性能优异的合金材料。热处理作为后续步骤,是通过加热和随后的冷却过程来改善材料的微观结构和性能。在这一过程中,纳米级 NbC 颗粒作为增强相,通过在制备过程中和热处理阶段的控制,均匀分布在铁基体中,形成均匀的强化相分布。 论文中还强调了机械合金化和热处理技术在制备纳米强化材料中的重要性。这两种方法的有效结合,为开发高性能的金属基复合材料提供了新的可能性。研究结果表明,所提出的制备方法对于工业生产具有重要的指导意义,不仅能够提升产品的质量,还可能降低生产成本,提高生产效率。 这项研究提供了一种新型的制备纳米 NbC 颗粒增强铁基材料的方法,并通过实验验证了其有效性和潜力。论文内容丰富,为相关领域的材料科学家和工程师们提供了宝贵的研究资料和实践经验。随着纳米技术在材料科学领域的不断发展和应用,我们可以期待更多的高性能材料将被开发出来,并在实际工业生产中得到应用。
2025-10-22 17:40:09 844KB 首发论文
1