针对传统灰色模型在多原始数据、长时间尺度的负荷预测情景下预测精度差的问题,文中分析了灰色模型(Gray Model,GM)的基本原理,并提出相应的改进措施,其中包括原始数据的加权处理、选取合适的初始条件及自适应优化模型参数。并将改进灰色模型(Improved Grey Model,IGM)应用于电力负荷预测。通过算例分析结果表明,无论在短期负荷预测还是在中长期负荷预测的情景下,所提出基于改进灰色模型的电力负荷预测方法相比于传统灰色模型,均具有更高的预测准确性,能够为电力系统的安全、稳定运行以及合理的规划提供重要支撑。
1
响应面试验最优值预测方法
2023-02-07 18:27:57 1.65MB 响应面 非原创
1
针对现有剩余寿命预测研究中需要多个同类设备历史数据离线估计模型参数的问题,本文提出了一种基于退化数据建模的服役设备剩余寿命自适应预测方法. 该方法,利用指数随机退化模型来建模设备的退化过程,基于退化监测数据运用Bayesian 方法更新模型的随机参数,进而得到剩余寿命的概率分布函数及点估计. 区别于现有方法,本文方法基于设备到当前时刻的监测数据,利用期望最大化算法对模型中的非随机未知参数进行在线估计,由此.无需多个同类设备历史数据. 最后,通过数值仿真与实例分析,验证了本文方法在剩余寿命预测时的有效性.
2023-01-04 16:58:13 1.33MB 寿命预测; 退化; Bayesian 方法;
1
基于BP网络的上证指数预测方法,内含数据集以及处理源码以及教程。预测涨跌
2022-12-12 11:28:59 16KB 上证指数 BP网络 数据集
基于多准则优化的组合预测方法,王坚强,,介绍了9个预测效果评价准则,提出了一种基于多准则优化的组合预测方法。该方法不同于传统的基于改善单个预测效果评价准则的组合预�
2022-12-06 12:16:34 153KB 首发论文
1

为了避免在传统模型库遴选组合过程中存在的信息不完备、组合膨胀等问题, 以人员甄选方法的基本思想
为基础, 提出了一种预测模型库的评价遴选组合方法. 在该方法中, 将遴选出所有适合本次预测问题的模型, 组成参
与模型集合; 然后, 根据每个模型的精度表现来确定对它们的能力满意度, 并由此决定它们的重要性赋权; 最后, 通过
实验表明了该方法得到的组合模型具有较好的预测效果.

1
(1)自回归(AR) (2)移动平均线 (3)自回归移动平均线 (4)自回归综合移动平均线(ARIMA) (5)季节性自回归综合移动平均线 (SARIMA) (6)具有外生回归量的季节性自回归综合移动平均线 (SARIMAX) (7)带有 ARIMA 误差的回归模型 (8)向量自回归(VAR) (9)GARCH 模型 (10)Glostan、Jagannathan 和 Runkle GARCH 模型
2022-11-28 16:26:01 333KB ARIMA SARIMA SARIMAX GARCH
一种基于Python和BP神经网络的股票预测方法
2022-11-17 18:18:10 2.06MB BP神经网络 Python股票预测
1
在了解SSA时候从文献中看到该预测方法,并将其实现,通过简单的案例测试了该方法,并得到较好的预测结果。当然该方法对非平稳序列的预测、长时序预测的效果怎样还未知,需要进一步验证,这里将代码进行整理和分享。
1
光伏电站短期发电功率预测方法研究,新的算法仿真
1