基于图论的乳腺肿瘤超声图像的分割和识别方法.pdf
2023-02-20 21:44:14 2.16MB 图论 图像算法 医疗 分割
1
提出一种基于肌电传感器 和加速度计的识别人体手势的智能信息系统
2023-01-08 20:51:34 840KB 肌电传感器
1
研究了多模态身份识别问题,结合人脸和掌纹两种不同生理特征,提出了基于特征融合的多模态身份识别方法。对人脸和掌纹图像分别进行Gabor小波、二维主元变换(2DPCA)提取图像特征,根据新的权重算法,结合两种模态的特征,利用最邻近分类器进行分类识别。在AMP、ORL人脸库和Poly-U掌纹图像库中的实验结果表明,两种模态的融合能更多地给出决策分析所需的特征信息相比传统的单一模态的人脸或掌纹识别具有较高的识别率,更具安全性和准确性。
1
目的通过对数据进行约简提高模式识别中数据的有效性,以提高胶合板缺陷检测的准确率和在线的实时性。方法利用粗糙集理论在数据约简上的优势,提取出对模式识别决策结果影响最大的属性,约简掉对决策结果影响较小的属性。利用模糊逻辑在不确定性问题的能力,提高边缘属性在模式识别中的权重值。利用神经网络在模式识别中的有效性,将粗糙集算法、模糊逻辑、神经网络的人工智能算法有效相结合,提出一种基于模糊粗糙集神经网络的模式识别分类方法。结果结合胶合板缺陷检测,针对胶合板的13类缺陷的17个属性,提取出最有效的数据,约简了对决策影响
2022-12-30 22:39:32 354KB 自然科学 论文
1
基于目标检测的户型图识别方法、装置、计算机设备.docx基于目标检测的户型图识别方法、装置、计算机设备.docx基于目标检测的户型图识别方法、装置、计算机设备.docx基于目标检测的户型图识别方法、装置、计算机设备.docx基于目标检测的户型图识别方法、装置、计算机设备.docx基于目标检测的户型图识别方法、装置、计算机设备.docx基于目标检测的户型图识别方法、装置、计算机设备.docx基于目标检测的户型图识别方法、装置、计算机设备.docx
动作识别研究 该存储库包含用于动作识别的6种代表性2D和3D方法的一般实现,包括I3D [1],ResNet3D [2],S3D [3],R(2 + 1)D [4],TSN [5]和TAM [ 6]。 这些代码用于我们对动作识别的分析。 陈春福(Richard)Chen *,Rameswar Panda *,Kandan Ramakrishnan,Rogerio Feris,John Cohn,Aude Oliva和Fanquanfu *,“对基于CNN的时空表示进行动作识别的深入分析”。 *:均摊 如果您使用此仓库中的代码和模型,请引用我们的工作。 谢谢! @inproceedings{chen2020deep, title={Deep Analysis of CNN-based Spatio-temporal Representations for Action Recog
2022-12-17 17:17:25 64KB Python
1
提出了一种基于二维码匹配的指针式仪表读数识别方法.该方法先实时采集高质量的仪表状态图像,同时获取二维码定位点信息以及与二维码相连接的数据库中存储的仪表类型信息,再根据二维码定位点信息对仪表图像进行快速倾斜校正,并利用二维码与仪表之间先验的几何位置关系快速提取图像中表盘所在的区域,最后根据获取的仪表类型信息,选择对应的仪表读数识别算法,以实现快速准确地识别仪表读数.实验结果表明:该方法能有效提高指针式仪表读数识别的准确率,尤其是对于复杂背景的仪表图像,该方法可用于电力系统中刻度均匀的指针仪表识别.
1
深入研究了流行的目标识别方法YOLOv3,将Inception模块融入其特征提取网络darknet-53中,从而得到新网络darknet-139。相比YOLOv3特征提取网络,新网络具有更好的特征提取能力。采集并制作算法所需的数据集,分别在YOLOv3和本文算法上进行训练并测试。实验结果表明,相比YOLOv3,本文算法的平均识别率提升了约2%。
2022-12-04 20:54:34 17.83MB 图像处理 无人机作 人工智能 目标识别
1
针对目前行人重识别技术的缺点,提出一种基于Siamese网络的行人重识别方法.首先使用Dropout算法对卷积神经网络进行改良,降低发生过拟合问题的概率;而后构造一个Siamese网络,将CNN (Convolution Neural Network)中特征提取和检验相融合,提高图像识别的效率和准确率;最后利用度量学习算法中的马氏距离作为检索图像匹配相似度的评价指标.实验结果表明:针对Market-1501数据集,该方法可以有效提高采用卷积神经网络的行人重识别方法识别效率和准确率.
1
为提高掌纹图像识别率,首先利用手掌的几何轮廓对所采集到的掌纹图像进行预处理,进行分割得到感兴趣的区域。再利用小波变换对掌纹图像分别进行多层分解,进而提取小波特征。最后利用BP神经网络进行分类。通过仿真实验表明,与单一的神经网络方法进行掌纹识别相比,这种将小波分析与神经网络相结合的方法收敛步数少、用时短、具有较高的识别率。
2022-12-02 10:36:49 290KB 软件
1