公路工程施工测量系统是一款专为从事公路建设与测量的专业人员设计的软件工具,它集成了多种公路测量所需的计算、分析和绘图功能。该系统能够帮助工程师们高效地完成公路工程的前期规划、设计以及施工过程中的测量工作,提高工作效率,减少人为误差。 在公路测量工作中,首先要理解的基本概念是地形测绘,这是所有公路工程的基础。地形测绘涉及到对地表特征的精确记录,包括地形起伏、地貌类型、水系分布等,通常通过GPS、全站仪、水准仪等设备进行数据采集。公路工程施工测量系统则可以处理这些原始数据,生成高精度的地形图,为设计路线提供依据。 公路设计阶段,测量工作至关重要。系统能进行路线设计,包括直线、曲线、平曲线、竖曲线的计算与绘制,确保路线的合理性和安全性。同时,还需要考虑道路的坡度、弯道半径、视距等因素,以满足行车需求。系统能快速计算出最佳设计参数,大大缩短了设计周期。 施工过程中,测量工作主要涉及放样和监测。放样是指将设计图纸上的线路、构造物等位置精确地标定到实地,这需要测量系统的放样功能,如坐标转换、点位放样等。监测则是对施工过程中的建筑物或路基进行变形观测,以确保工程质量。系统可自动处理观测数据,及时发现并预警潜在问题。 此外,公路工程施工测量系统还可能包含土方量计算、横断面分析等功能。土方量计算是确定工程量和成本估算的关键,系统能根据设计高程和实际地形数据,准确计算出填挖土方的体积。横断面分析则是评估道路两侧土地利用情况,确保路基稳定和环境保护。 "公路工程施工测量系统"是公路建设领域不可或缺的工具,它结合了现代测量技术与计算机软件的优势,简化了复杂的测量工作,提高了工程的精准度和效率。对于公路测量工作人员来说,掌握并熟练使用这样的系统,不仅能提升专业技能,还能在实际工作中带来显著的效益。
2024-08-18 09:39:12 1.83MB 公路测量
1
本系统主要为公路新线、公路增建二线、公路互通、铁路新线、铁路复线、铁路电气化改造等工程的施工复测、施工放样、平面线形图绘制、设计图纸复核等而设计。系统分为积木法坐标计算、交点法坐标计算、互通式立体交叉、纵断面高程计算、放样辅助计算、交会定点计算、导线平差计算、路基土石方计算八大模块。  一、各模块主要功能 1、积木法及交点法坐标计算:可以对公路主线、立交匝道及铁路线路进行中线桩、边线桩施工放样工作。可计算的线形包括直线、圆曲线、缓和曲线、单交点对称型曲线、单交点非对称型曲线、S型曲线、C型曲线、卵形曲线、凸型曲线、复曲线、回头曲线等。坐标计算时,可计算任意角度的边桩,同时系统在加桩时可一次计算多个边桩,桩间米数为自动计算时桩的间距,支持“桩间米数”与“加桩桩号”同时输入计算,逐桩计算时系统会将各主点坐标一并输出,支持多个“加桩桩号”一次输入计算。如果给定置镜点、后视点坐标还可计算出放样角度及放样距离。 2、纵断高程计算:直线段高程计算、竖曲线高程计算及全线纵坡高程计算三模块可计算全线任意点高程。  3、导线平差计算:适用于各等级各类型闭、附合单导线的严密、近似平差计算。严密平差时可以提供完整的精度评定及各种所需报表。    4、放样辅助计算:可进行两点坐标正反算、缓和曲线起点反算、桥涵放样坐标计算。    5、交会定点计算:可进行前方交会、后方交会、侧方交会、测边交会计算。 6、坐标转换程序:可进行高斯投影正反算、坐标换带、方向与边长改化计算。 7、互通式立体交叉:可以计算任何复杂组合曲线,该项功能可以将一座互通中所有匝道的平面线位数据及纵断面数据一次性输入,或将几座、几十座、几百座互通中的匝道一次性输入,您只需输入互通匝道的编号(如1A,1代表1号互通,A代表1号互通中的A匝道,如果只有一座互通,只输匝道号即可),您只需输入有限的几个数据系统会自动搜索计算线路各点的坐标及高程。 二、本系统主要特点 1、功能全面,包含了公路、铁路施工测量的各个方面,更新版本将根据用户需求随时完善、增强。  2、表格式的数据操作,简单、方便,所输入的历史数据均可留在系统中,每次程序启动后均可显示以前的数据,包括计算结果。本系统还可将用户输入资料保存为磁盘文件(*.stc)以便交流及随身携带,也可将原始数据或计算结果输出为EXCEL及文本文件。  3、所见即所得的报表输出功能,支持报表设计,用户可根据自已的需要设计出适合的报表,先进的数据计算引擎,计算速度极快,在预览页面可将报表保存为同式样的EXCEL或网页文件,在EXCEL中真正体现了人性化的报表界面,支持数据的直接显示、预览、打印。   4、导线严密平差采用条件平差,所计算数据的变量均采用双精度浮点型,计算精度极高。线路中缓和曲线的计算精度为0.05mm,由程序按精度动态选取计算项数。 5、漂亮的AutoCad输出功能, 可以将原始数据发送到AutoCad,生成.dwg文件,生成的AutoCad平面线位图包含百米桩、公里桩、起讫桩号及主点标志(如ZY、YZ、ZH、HY、YH、HZ、YY、GQ)等,生成的图形坐标系为大地坐标系,图形按大地坐标系绘制,系统提供了“世界坐标系→大地坐标系”、“大地坐标系→世界坐标系”间的转换,系统支持整座互通N个匝道的绘图及AutoCad输出。 6、本系统使现场施工放样的计算工作变的简单、方便,同时也使公路互通匝道复杂曲线的计算变的容易、准确,也许这才是你真正期待的施工测量软件。 7、本系统特别针对公路互通匝道的复杂曲线进行了优化设计,根据设计提供参数可选用多种方案进行计算,既可对组成匝道曲线的单个线元进行计算,也可将整条匝道的曲线参数输入进行全线计算,还可以根据匝道起点或终点坐标、方位角推算其它主点坐标及方位角,是互通匝道复杂曲线放样的最得力助手。 愿更多的测量朋友早日从繁琐的手工计算中解脱出来,留给自已更多自由时间享受生活。
2024-08-18 09:06:52 4.88MB 公路施工
1
实用射频测试和测量
2024-08-15 11:25:21 21.06MB 实用射频测试
1
理论分析了温度通过热胀冷缩效应对光纤长度产生影响的机理,并在不同波长情况下通过不同长度的光纤进行了实验验证。实验结果表明:在不同波长下,当温度每变化1 ℃时每千米单模光纤长度改变量相差不大;对于不同长度的光纤,当温度每变化1 ℃时单模光纤长度改变量与光纤长度基本呈正比例关系,基本与理论分析结果一致。
2024-08-13 16:19:12 2.96MB 光纤光学 长度测量 温度效应 测量精度
1
自适应光学测量和校正软件
2024-08-12 16:32:16 6.53MB 开源软件
1
Cesium是一个开源的JavaScript库,专门用于创建交互式的3D地球浏览器。在“Cesium 高度测量工具-源码”这个项目中,我们聚焦于一个实用的特性——高度测量。这个工具允许用户通过简单的鼠标操作来测量地表两点之间的海拔高度差。以下是关于这个功能的详细知识点: 1. **Cesium库**:Cesium是一个基于WebGL的3D地球渲染引擎,能够提供实时的全球地形、卫星图像和3D模型展示。它支持跨平台的浏览器运行,广泛应用于地理信息系统(GIS)、虚拟现实(VR)和增强现实(AR)等领域。 2. **交互设计**:描述中的“左键选择开始点,左键选择第二个点,右键结束”是常见的交互模式,符合用户的直觉操作习惯。左键通常用于选择或触发事件,右键则常用于结束或取消操作。 3. **高度测量**:在Cesium中,高度测量涉及到地形数据的读取和计算。Cesium通常使用数字高程模型(DEM)数据来获取地球表面的海拔信息。用户选择的两点之间高度差的计算,需要获取这两点在3D空间中的坐标,然后通过地形数据查询这两个点的海拔,最后进行差值计算。 4. **三维坐标系统**:理解Cesium中的坐标系统至关重要。Cesium主要使用WGS84坐标系,这是一种全球统一的地理坐标系统,用于定位地球上的任何位置。 5. **地形数据处理**:Cesium使用TileMapService imagery provider加载地形数据,这些数据被分割成小块(tiles),按需下载,提高了加载速度和性能。地形数据可能来源于多种格式,如Tiled Elevation Data(TED)或USGS的DEM数据。 6. **源码分析**:在源码中,你可以找到处理鼠标事件、获取地形高度、计算高度差以及更新用户界面的相关代码。这些代码通常会包含事件监听器(如`onMouseDown`、`onMouseMove`和`onMouseUp`)、地形查询函数(如`Cesium.HeightProvider`)和用户界面更新逻辑。 7. **WebGL技术**:实现3D效果离不开WebGL,这是一种在浏览器中渲染3D图形的API。Cesium通过WebGL将地形数据转化为可交互的3D场景。 8. **地图交互**:在Cesium中,用户可以通过鼠标滚轮缩放,平移和旋转视角,这些都是通过鼠标事件处理和视图变换矩阵计算实现的。 9. **自定义插件开发**:Cesium提供了丰富的API和示例,使得开发者可以轻松创建自定义工具和扩展。高度测量工具就是一个很好的例子,开发者可以根据需求扩展其他测量功能,如距离、面积等。 10. **性能优化**:在处理大规模地形数据时,Cesium采用分块加载策略,只加载可视区域内的数据,减少了内存占用和渲染时间,提升了用户体验。 通过对Cesium高度测量工具的源码学习,开发者不仅可以掌握Cesium的基本用法,还能深入理解3D地理信息系统的设计与实现,这对于开发GIS应用或者WebGL项目具有很大的实践价值。
2024-08-02 16:25:48 6.71MB
1
小电流换种说法就是高电阻,测量小电流有两种基本技术:分流法和反馈安培计法。在测试中,在理想情况下,电流表对电路完全没有影响。然而,在实际测量中,可能会出现多种误差源。正如我们在下文中讨论的一样,这些误差源会造成明显的测量不确定性。   小电流的定义   IC测试机因为是高端测量,会受到内部开关,引线,pcb板等影响,所以电流量程一般为1UA左右;JUNO机等一些分立器件专用测试机,采用低端测量,加上特殊的布线等方式可以达到NA级。我们这里讨论的是采用一种简单通用的方式,实现NA级或NA级以下电流的测试。   IV转换电路原理   
2024-08-02 11:46:01 238KB
1
产品特点: 1.一键测量各类零件高度差/平面度/3D轮廓 2.支持拼接图像,满足大尺寸检测范围 3.大理石平台,测量精度±0.001mm 4.可同时测量100个尺寸 产品优势: 1.线激光,采用卓越光学设计,实现高精度和快速的测量技术 2.大理石结构,加厚硬件,硬度强耐磨,不变形,受用寿命长 3.检测平面度,设置简单快捷,方便多种产品切换的测量需求 4.检测高度差,支持多次扫描拼接图像,实现大尺寸产品检测 应用领域: 适用于精密五金件/手机零件等产品的平面度检测、高度检测、台阶检测,以及3D轮廓度检测。
2024-08-01 20:32:44 280KB
1
在MATLAB开发中,峰值查找和测量是一项关键的技术,尤其在信号处理和数据分析领域中扮演着重要角色。本文将深入探讨如何在MATLAB环境中实现这一功能,并基于提供的压缩包文件内容进行讨论。 让我们理解“峰值查找”的概念。在信号处理中,峰值通常指的是信号中高于或低于周围值的局部极大值或极小值。峰值查找算法的目标是识别这些特征点,以便对信号的特性进行分析或提取有用信息。在描述中提到,这个MATLAB开发项目专注于在噪声数据集中定位正峰(即局部极大值)。 在MATLAB中,可以使用内置函数如`findpeaks`来寻找信号的峰值。`findpeaks`函数可以检测一个一维数组中的局部最大值,并返回峰值的索引和相应的峰值值。不过,对于噪声数据集,可能需要额外的预处理步骤,如滤波或者平滑操作,以减少噪声的影响,使峰值更易于识别。 接着,我们讨论“测量”部分。在找到峰值之后,我们可能需要对它们进行各种测量,例如峰值的幅度、宽度、间期等。这可以通过自定义函数实现,也可以结合MATLAB的其他工具,如`width`函数来计算峰值的宽度,或者使用时间间隔分析来确定峰值之间的间隔。 在提供的压缩包文件中,我们看到有两个文件:`license.txt`和`PeakFinder`。`license.txt`通常包含软件的许可信息,对于开源项目,可能是MIT、GPL等类型的许可证,规定了代码的使用、分发和修改规则。而`PeakFinder`可能是作者实现的峰值查找和测量的MATLAB函数。这个函数可能包含了自定义的算法,用于处理噪声数据集中的峰值,提供了比MATLAB内置函数更特定的性能或功能。 为了更好地理解和利用这个`PeakFinder`函数,我们需要打开并查看其源代码。它可能包括了预处理步骤、峰值检测算法以及峰值测量的逻辑。通过学习和理解这个函数,我们可以将其应用到自己的MATLAB项目中,或者作为模板进行修改以适应不同的数据集和需求。 总结,MATLAB的峰值查找和测量涉及到信号处理的基本原理和算法实现。在处理噪声数据时,需要结合滤波、平滑等预处理技术,然后利用MATLAB提供的工具或自定义函数进行峰值检测和测量。提供的`PeakFinder`函数为我们提供了一个具体的实现示例,通过分析其代码,我们可以学习到如何在实际项目中有效地执行这一过程。
2024-07-24 19:41:35 426KB
1
基于光纤延时声光调制器(AOM)频移自差拍法实验研究了不同线宽激光的功率谱特性,并作了相关的仿真分析;同时,提出了利用短光纤测量窄线宽激光器线宽的一种简单方法。当光纤延时时间小于激光器的相干时间时,自差拍频谱的3 dB带宽不能直接用于标定激光线宽。理论分析和实验均表明,此时激光的线宽信息主要由自差拍频谱中两翼的周期性振荡成分决定,几乎不受中央尖峰的影响。根据最小二乘法理论,对实验所测的自差拍频谱进行理论拟合可获得待测激光的线宽。该方案基本不受延时自差拍系统最小分辨率的限制,可以用于激光线宽的快速测量,特别是窄线宽激光的测量
1