针对人脸识别系统中出现的通过照片或视频“欺诈”解锁问题,提出一种活体检测方法,通过随机指令判断被检测对象是否为真人。利用HOG特征和随机森林算法对摄像头采集的图像进行人脸检测,预测脸部68个特征点位置,把68个特征点位置和脸部位置的相对位置归一化后作为姿态的特征,提取的姿态特征与SVM分类器相结合,训练出分类效果较好的头部姿态估计分类器。通过多次实验,对特征提取方法进行优化,进一步提高检测准确率。最后,使用随机互动式命令序列对被检测人发出指令,实现活体检测。该方法对头部姿态估计具有较高的鲁棒性,并且可以有效地防范照片和视频认证攻击。
2022-05-10 12:01:55
1007KB
论文研究
1