分享自然语言处理课程——自然语言处理NLP企业级项目课程合集(实体关系抽取+情感分析+新闻文本分类+火车票识别+命名实体识别),视频,源码,数据,课件,资料完整
2023-07-21 10:33:18 287B 自然语言处理 NLP
1
是一个情感分类的项目,前面是对emotion数据集的处理和分析,以及将整个数据集分词以及处理成模型的输入形式。 主要是通过加载一个文本分类的预训练模型,然后在数据集上面进emotion数据集上面的fine-tuning。然后对训练好的模型进行效果的分析,包括F1,Precision和Recall等。 fine-tune transformers distilbert-base-uncased - distilbert 是对 bert 的 distill 而来 - 模型结构更为简单, - bert-base-uncased 参数量:109482240 - distilbert-base-uncased 参数量:66362880 - trainer默认自动开启 torch 的多gpu模式, - `per_device_train_batch_size`: 这里是设置每个gpu上的样本数量, - 一般来说,多gpu模式希望多个gpu的性能尽量接近,否则最终多gpu的速度由最慢的gpu决定, - 比如快gpu 跑一个batch需要5秒。
2023-07-10 16:26:26 658KB bert Transformer fine-tuning LLM
1
自然语言处理作业:基于CNN的文本分类模型训练 数据划分 分成训练集、验证集、测试集 加载预训练词向量模型 基于CNN的文本分类 数据划分 分成训练集、验证集、测试集加载预训练词向量模型 ../资料/实验/第四章/sgns.sogou.word.bz2 使用Keras对语料进行处理 提取文本中的词并向量化处理,也可以使用其他工具,或自己编写 定义词嵌入矩阵生成Embedding Layer构建模型、训练、评估 输出模型的准确率(以图的形式)
2023-06-08 20:56:11 338.98MB 自然语言处理 cnn
1
本资源是https://jarod.blog.csdn.net/article/details/127636618的配到资源,详细讲解了如何从零开始用TensorFlow搭建TextCNN,完成文本分类任务。 包含完整源代码和教程文档。模型搭建在Jupyter环境,可以根据教程文档或参考源代码自己一步一步实现自己的TextCNN,并在自己的数据集上训练出自己的模型。 模型在测试集上准确率达到96.45%,可以满足生产使用。
2023-05-12 17:45:36 60KB 深度学习 TextCNN python TensorFlow
1
pytorch实现文本情感分析详细教程 关键词:python,情感分析,英文文本分类,Bi-LSTM 训练集准确度高达98%,验证集准确度最高达到82%,数据集来自竞赛平台DataCastle,竞赛链接为:https://challenge.datacastle.cn/v3/cmptDetail.html?spm=5176.12282016.0.0.31ed52e3oG2G01&id=359,本代码可以帮助大家获取前70的排名成绩,后续可以进行二次修改,有望冲击前50。
2023-04-22 14:40:48 259.93MB 情感分析 文本分类 pytroch python
1
Keras中的字符级CNN 该存储库包含用于字符级卷积神经网络的Keras实现,用于AG新闻主题分类数据集上的文本分类。 已实现以下模型: 张翔,赵俊波,严乐村。 。 NIPS 2015 Yoon Kim,Yacine Jernite,David Sontag,Alexander M.Rush。 。 AAAI 2016 白少杰,齐科·科特尔(J. Zico Kolter),弗拉德·科特(Vladlen Koltun)。 。 ArXiv预印本(2018) Kim的CharCNN最初是经过端到端训练的语言建模管道的一部分,但已被改编为文本分类。 用法 安装依赖项(Tensorflow 1.3和Keras 2.1.3): $ pip install -r requirements.txt 在config.json文件中指定训练和测试数据源以及模型超参数。 运行main.py文件,
2023-03-29 19:13:07 11.26MB Python
1
本项目通过textcnn卷积神经网络实现对文本情感分析识别,由python 3.6.5+Pytorch训练所得。
2023-03-22 16:44:42 289KB pytorch python 文本分类 情感分析
1
使用RNN循环神经网络实现对爬取的京东评论信息进行情感分析 其中包括源代码、数据集、停用词等
2023-03-22 12:02:45 3.41MB 深度学习 NLP 循环神经网络 文本分类
1
以微博为代表的社交平台是信息时代人们必不可少的交流工具.挖掘微博文本数据中的信息对自动问答、舆情分析等应用研究都具有重要意义.短文本数据的分类研究是短文本数据挖掘的基础.基于神经网络的Word2vec模型能很好的解决传统的文本分类方法无法解决的高维稀疏和语义鸿沟的问题.本文首先基于Word2vec模型得到词向量,然后将类别因素引入传统权重计算方法TF-IDF (Term Frequency-Inverse Document Frequency)设计词向量权重,进而用加权求和的方法得到短文本向量,最后用SVM分类器对短文本做分类训练并且通过微博数据实验验证了该方法的有效性.
2023-03-16 16:35:47 977KB Word2Vec 短文本分类 TF-IDF
1
ChattingRobot_RNN-master.zip
2023-03-16 11:48:12 36KB 文本分类 情感分析
1