实验一 八段数码管显示 1.实验目的: (1)了解数码管动态显示的原理。 (2)了解74LS164扩展端口的方法。 2.实验要求: 利用实验仪提供的显示电路,动态显示一行数据. 3.实验线路: 这里只是显示草图,详细原理参见第一章的1.1.15 "8155键显模块"
2025-10-17 10:47:38 3.62MB
1
### 单片机基础开发与Keil C使用详解 #### Keil C超级仿真器使用说明概览 在本文档中,我们将深入探讨如何利用Keil C超级仿真器进行MCS-51系列单片机的基础开发。这不仅包括了Keil软件的安装与配置过程,还涵盖了USB驱动的安装步骤,以及详细的软件操作指南。此外,还将通过一系列实验来巩固理论知识,并掌握实际操作技巧。 #### 一、产品简介 Keil C超级仿真器是一款专为MCS-51单片机设计的开发工具。它能够提供完整的仿真环境,使开发者无需真实硬件即可进行编程、调试等工作。这一工具特别适合初学者,帮助他们快速上手并熟悉单片机开发流程。 #### 二、KEIL软件的安装 1. **准备工作**:确保计算机操作系统版本兼容,推荐使用Windows 7及以上版本。 2. **下载安装包**:访问官方站点或可信渠道下载最新版的Keil MDK-ARM安装包。 3. **安装流程**: - 运行安装程序。 - 遵循安装向导提示完成安装。 - 安装过程中可以选择安装路径及组件等设置。 4. **激活步骤**: - 安装完成后,运行Keil软件。 - 根据提示注册账号并激活软件。 - 若有许可证文件,则导入许可证完成激活。 #### 三、USB驱动的安装 1. **获取驱动**:随Keil C超级仿真器一同提供的USB驱动,通常包含在安装包内。 2. **安装驱动**: - 将仿真器通过USB连接至计算机。 - 打开设备管理器查找未识别的硬件设备。 - 右键选择更新驱动程序,手动指定驱动程序的位置完成安装。 3. **验证连接**:安装完毕后,可通过软件检测仿真器是否正确连接。 #### 四、KEIL C软件的操作说明 ##### 产品简介 1. **系统组成**:Keil C超级仿真器由仿真头、USB接口线、仿真器软件等部分组成。 2. **实验内容**:覆盖了从基本的软件编程到复杂的硬件接口实验等多个方面。 3. **实验方式**:既支持虚拟仿真,也支持与真实硬件相连的实物调试。 4. **支持器件**:主要支持MCS-51系列及其兼容型号。 ##### 综合实验仪 1. **实验模块**:提供了丰富的实验模块,如八段数码管、键盘、步进电机控制等,便于进行各种类型实验。 2. **常用逻辑门电路**:介绍基本逻辑门的工作原理及应用实例。 3. **自由实验插座**:用于搭建自定义电路,提高实验灵活性。 4. **直流电源外引插座**:可为外部电路提供稳定的直流电源。 5. **总线插孔**:便于接入不同的总线系统,实现数据传输。 6. **空间分配**:合理规划实验板上的各个区域,确保高效利用空间。 ##### 实验例程(MCS51) 本节将详细介绍一系列实验案例,涵盖软件编程与硬件接口两大部分: 1. **软件实验** - **拆字程序实验**:学习如何通过程序分解汉字。 - **拼字程序实验**:了解汉字的拼接过程。 - **数据区传送子程序实验**:掌握数据块的移动技术。 - **数据排序实验**:实现对数据的排序处理。 - **清零程序(模拟调试)**:熟悉Keil软件的调试功能。 2. **硬件基础性实验** - **八段数码管显示实验**:学习如何控制数码管显示数字。 - **键盘扫描显示实验**:理解键盘输入与显示的基本原理。 - **脉冲计数(定时/计数器记数功能实验)**:利用定时器/计数器功能计数脉冲信号。 - **A/D转换实验**:探索模拟信号到数字信号的转换方法。 - **D/A0832转换实验**:了解数字信号到模拟信号的转换过程。 - **电子琴实验**:通过单片机控制发声装置。 - **步进电机控制实验**:掌握步进电机的驱动技术。 - **RAM扩展实验**:学习如何扩展单片机的存储容量。 - **工业顺序控制(INT0INT1)综合实验**:运用中断功能控制工业顺序。 - **扩展时钟系统(DS12887)实验**:了解实时时钟的应用场景。 - **V/F压频转换实验**:探究电压频率转换原理。 - **力测量实验**:实现力的测量。 - **温度测量实验**:掌握温度传感器的使用方法。 - **直流电机转速测量与控制实验**:通过单片机控制直流电机转速。 - **点阵式LCD液晶显示屏实验**:学习液晶显示技术。 - **点阵LED广告屏实验**:利用LED点阵屏展示文字或图像。 - **红外线遥控实验**:了解红外遥控系统的构建过程。 通过上述内容的学习与实践,可以全面掌握基于MCS-51单片机的软硬件开发技能,为进一步深入研究打下坚实基础。
2025-10-17 10:45:01 22.48MB 实验手册
1
计算机图形学是一门综合性的学科,涉及计算机科学、数学、工程学和艺术等多个领域,主要研究如何通过计算机技术创建、处理、存储和显示图形信息。该学科在游戏设计、影视特效、虚拟现实、医疗成像、建筑设计、机器人视觉等领域有着广泛的应用。 在高校的教学体系中,计算机图形学通常作为一门专业课程开设,旨在培养学生在图形学领域的理论知识和实践能力。以西南交通大学计算机图形学实验为例,学生将通过一系列的实验操作,亲身体验图形处理的过程,学习和掌握图形学的基本概念、算法和技术。 实验一作为课程的开端,往往会聚焦于基础概念的引入和图形学工具的初步使用。例如,学生可能会接触到图形学中的基本术语,如像素、分辨率、向量、位图、矢量图等。此外,实验可能还会引导学生熟悉图形处理软件的操作,如Adobe Photoshop、Illustrator或专业图形学软件OpenGL、DirectX等。 实验内容可能会包括简单的图形绘制、图像的基本处理(如裁剪、旋转、缩放)、颜色模型的转换(如RGB到CMYK的转换)、基本图形变换(平移、旋转、缩放)、以及光照和阴影效果的模拟等。通过对这些基础操作的练习,学生不仅能够理解计算机图形学的基本原理,还能够初步掌握图形的创建和编辑技能。 对于图形学的学习者来说,理解图形的数据结构和存储方式至关重要。例如,位图图形是通过像素阵列来存储图像信息的,每个像素的颜色值由不同位深度的颜色通道组成。而矢量图形则是通过几何对象(如点、线、曲线、多边形等)来表示图形,其优点在于可以无限放大而不失真。 在进行图形学实验时,学生还需要了解图形学中的坐标系统,比如笛卡尔坐标系在二维和三维空间中的应用,以及如何通过数学变换来控制图形对象的位置和形态。此外,光照模型的学习也是一大重点,它能够帮助学生理解如何模拟现实世界中的光线效果,从而在计算机生成的图像中加入更逼真的光照和阴影。 随着实验的深入,学生将逐渐接触到更高级的图形学技术,如纹理映射、反走样技术、多边形建模、虚拟现实中的场景构建等。通过实验操作,学生能够将理论知识与实际操作相结合,从而加深对计算机图形学的认识和应用能力。 随着计算机技术的不断进步,计算机图形学也在不断地发展和扩展。新的图形学技术和算法,如基于物理的渲染(PBR)、实时光线追踪、深度学习在图形学中的应用等,不断地推动着图形学领域的创新和发展。对于计算机图形学的学习者来说,掌握这些新技术和新算法,将有助于他们在未来的学习和工作中获得更多的机遇。
2025-10-17 09:31:15 61.03MB 计算机图形学
1
Linux环境下外设驱动的应用实验,特别是摄像头采集实验,是嵌入式开发和Linux系统编程中的一个重要环节。在这个实验中,核心目标是将摄像头捕捉到的视频数据实时显示在触摸屏上,这涉及到多个技术层面的综合运用。 要进行摄像头采集,需要使用Linux下的Video for Linux Two(V4L2)这一内核API。V4L2为视频设备提供了统一的编程接口,使得开发者能够编写应用程序来控制摄像头设备进行视频流的采集、处理和输出。实验的第一步通常是使用v4l2-ctl工具或者编写相应的C语言程序来查询摄像头的功能和能力,如支持的图像格式、分辨率、帧率等。 接下来,开发者需要编写一个应用程序,该程序通过V4L2接口打开摄像头设备,配置相应的参数,并且开始视频流的捕获。在捕获过程中,程序需要从摄像头设备的缓冲区中读取视频帧数据。这些数据通常以原始格式保存,因此需要进一步的处理才能在触摸屏上显示。 对于数据的处理,可能需要实现一个视频编解码过程,将原始视频数据转换为触摸屏能够识别和显示的格式。在嵌入式Linux系统中,这可能意味着需要使用libjpeg等库来处理JPEG格式的数据,或者使用硬件加速器来提升处理性能。 在视频数据处理完毕之后,接下来的步骤是将处理后的视频帧送到触摸屏上显示。这通常需要利用Linux系统中的图形驱动和图形库,如DirectFB、Qt或GTK等。在这个过程中,开发者需要根据触摸屏的硬件接口和驱动要求,来编写相应的显示代码。 整个摄像头采集实验的难点在于,需要处理好摄像头硬件与Linux系统之间的交互,以及视频数据在不同格式和不同设备之间的转换。这不仅需要对V4L2 API有深入的理解,还需要对Linux内核的图形驱动和系统编程有相当程度的熟悉。此外,考虑到性能优化,还需要对CPU与GPU之间的数据传输、缓存管理等进行细致的调整。 在这个实验中,文件名称“test”可能是一个测试程序或者脚本的名称,该程序或脚本负责初始化摄像头设备,捕获视频数据,并将数据进行简单处理后在触摸屏上显示。程序“test”可能包含了所有必要的代码,来执行上述提到的操作,包括打开设备、配置视频流、读取数据、处理数据和显示数据等。 Linux外设驱动应用中的摄像头采集实验是一个复杂的过程,它不仅考验了开发者的编程能力,也考验了他们对整个Linux操作系统架构和硬件交互机制的理解。通过这样的实验,开发者可以深入掌握Linux系统编程和嵌入式设备开发的关键技术点。
2025-10-16 17:22:46 18KB linux v4l2
1
内容概要:本文档是中南林业科技大学计算机与数学学院的一份《物联网技术与应用》课程实验报告,涵盖了16个实验,旨在让学生通过实际操作掌握物联网的基础知识和技术。实验内容涉及双色LED、RGB-LED、七彩LED、继电器、激光传感器、轻触开关、倾斜开关、振动开关、红外遥控、蜂鸣器、干簧管传感器、U型光电传感器、PCF8591模数转换器、雨滴传感器、PS2操纵杆和电位器传感器等多种电子元件的使用。每个实验详细介绍了实验目的、所需组件、实验原理、实验步骤和实验体会,帮助学生理解各个元件的工作机制和应用场景。 适合人群:计算机科学与技术专业的本科生,尤其是对物联网技术和Arduino编程感兴趣的初学者。 使用场景及目标:① 掌握Arduino Uno主板和其他电子元件的使用方法;② 理解并应用各种传感器和执行器的工作原理;③ 提升学生的动手能力和编程技巧,培养解决实际问题的能力。 其他说明:实验报告不仅记录了具体的实验过程和结果,还包括了学生在实验中的思考和感悟,有助于学生更好地理解和记忆所学知识。此外,实验内容循序渐进,从简单的LED控制到复杂的传感器应用,逐步引导学生深入学习物联网技术。
2025-10-16 09:10:51 5.69MB Arduino 嵌入式系统 I2C
1
CookieLab01.zip 是一个专为学习、研究和演示HTTP Cookie在Web开发中应用而设计的PHP实验源码包。Cookie是Web服务器保存在用户本地终端(如浏览器)上的一小段文本信息,它允许服务器跟踪和识别用户会话,从而在无状态的HTTP协议上实现状态管理。本源码包通过一系列精心设计的PHP脚本,帮助学习者深入理解Cookie的工作原理、创建、读取、修改以及删除Cookie的方法。 二、主要内容 基础Cookie操作示例: 创建Cookie:展示如何在PHP脚本中创建Cookie,并设置其名称、值、过期时间等属性。 读取Cookie:演示如何读取并显示当前用户浏览器中的Cookie信息。 修改Cookie:通过修改Cookie的值或过期时间,展示如何更新已存在的Cookie。 删除Cookie:说明如何正确删除用户浏览器中的Cookie,避免潜在的安全风险或不必要的存储占用。 用户会话管理示例: 利用Cookie实现简单的用户登录状态管理,包括用户登录、保持登录状态、以及登出功能。 展示如何通过Cookie记住用户的偏好设置,如语言选择、主题样式等,提升用户体验。
2025-10-15 22:08:08 5.5MB 网络 计算机网络 Cookie
1
粒子群优化(PSO)技术在舵机系统中的应用,特别是用于优化线性自抗扰控制(LADRC)的参数。舵机系统作为船舶或飞行器的关键执行机构,其性能直接影响整体安全性和稳定性。传统的LADRC虽然表现出色,但在参数固定的情况下缺乏灵活性。PSO作为一种智能搜索算法,能够通过迭代方式找到最佳参数组合,从而提高系统的响应速度、稳定性和抗干扰能力。文中还展示了大量实验对比,证明了PSO优化后的LADRC在多个方面的显著优势。 适合人群:从事自动化控制、机械工程及相关领域的研究人员和技术人员。 使用场景及目标:① 提高舵机系统的性能和灵活性;② 在复杂多变的环境中确保系统的稳定性和适应性;③ 探索新型控制算法的应用前景。 其他说明:本文不仅探讨了理论背景,还提供了具体的实验数据支持,有助于读者深入理解和实际应用。
2025-10-15 20:19:39 839KB
1
华南理工大学数字通信原理实验思考题参考答案(推荐文档).doc
2025-10-14 20:23:25 156KB
1
在本文中,我们将深入探讨如何在WebGL与React框架下实现流体模拟实验。WebGL是一种JavaScript API,用于在任何兼容的浏览器上进行三维图形渲染,而无需插件。ReactJS是一个流行的JavaScript库,用于构建用户界面,尤其是单页应用程序(SPA)。结合这两个技术,我们可以创建交互式的、视觉吸引人的流体模拟应用。 Pavel Dobryakov的工作是这个项目的基础,他利用WebGL的强大功能来模拟流体动力学。流体模拟涉及计算流体的动力学行为,通常通过Navier-Stokes方程进行建模。在这个实验中,我们可能使用了粒子系统或者有限差分方法来近似这些复杂的数学模型。 要运行这个应用,你需要确保你有一个Node.js环境,并安装了Yarn。Yarn是一个包管理器,可以简化依赖项的安装和管理。按照描述中的步骤,你可以通过运行以下命令来准备项目: 1. `yarn install`:这个命令会读取项目根目录下的`package.json`文件,下载并安装所有必要的依赖包。这可能包括React、WebGL库(如three.js或gl-matrix)、以及Material-UI等样式库。 2. `yarn dev`:此命令启动开发服务器,它会监听代码的变化并自动重新加载,以便于实时预览和调试。 在React应用中,流体模拟通常会作为一个组件实现。这个组件可能会有以下几个部分: 1. **状态管理**:React的状态管理用于存储流体模拟的数据,如粒子位置、速度、压力等。这通常通过React的`useState`或`useReducer` Hook完成。 2. **渲染逻辑**:WebGL部分负责将这些数据转化为屏幕上可见的图像。这涉及到设置顶点着色器和片段着色器,它们分别处理几何形状和颜色。可能使用WebGL库如three.js来简化这些操作。 3. **物理模拟**:在每一帧,都需要更新流体的状态。这可能是一个复杂的迭代过程,涉及计算力(如表面张力、重力)和速度场的扩散。JavaScript函数将执行这些计算。 4. **事件处理**:为了增加交互性,可以监听用户的输入,如鼠标点击或拖动,以改变流体的初始条件或边界条件。 5. **Material-UI集成**:这个项目标签提到了Material-UI,它是一个流行的React UI框架,可以提供一致的、响应式的界面设计。可能用于创建控制面板,用户可以通过它调整流体参数,如粘度、密度等。 "WebGL + React中的流体模拟实验"是一个结合了前端开发、计算机图形学和物理学的综合性项目。它不仅展示了React和WebGL的协同工作,还展示了如何用JavaScript进行物理模拟。这样的实验对于学习Web开发、动画效果以及科学可视化具有很高的价值。
2025-10-14 20:04:09 240KB webgl reactjs material-ui JavaScript
1
操作系统实验报告----进程管理 本实验报告的主要目的是掌握 Linux 中进程的创建方法及执行情况,深入理解进程、进程树等概念,并掌握系统调用 exit() 和 _exit() 的使用。此外,还将分析进程竞争资源的现象,并学习解决进程互斥的方法。 一、进程管理实验目的 1. 掌握 Linux 中进程的创建方法及执行情况 2. 加深对进程、进程树等概念的理解 3. 掌握 Linux 中如何加载子进程自己的程序 4. 掌握父进程通过创建子进程完成某项任务的方法 5. 掌握系统调用 exit() 和 _exit() 的使用 6. 分析进程竞争资源的现象,学习解决进程互斥的方法 二、实验内容 (一)进程的创建 1. 编写一段程序,使用系统调用 fork() 创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符。 (二)进程树的创建 1. 运行以下程序,分析程序执行过程中产生的进程情况。 #include main(){ int p,x; p=fork(); if (p>0) fork(); else{ fork(); fork(); } sleep(15); } 实验步骤: 1. 编译连接:gcc –o forktree forktree.c 2. 后台运行:./forktree & 3. 使用 pstree –h 查看进程树 运行结果: ├─gnome-terminal─┬─bash─┬─forktree─┬─forktree─┬─forktree───forktree │ │ │ │ └─forktree │ │ │ └─forktree │ │ └─pstree 分析:程序运行,系统首先创建一个进程 forktree,执行到 p=fork() 创建一个子进程 forktree,子进程获得处理机优先执行,父进程等待;执行 else,当执行到第一个 fork() 函数时,子进程创建了一个进程 forktree,称之为孙进程,孙进程获得处理机往下执行,子进程等待;执行到第二个 fork() 函数时,孙进程又创建一个进程 forktree,称之为重孙进程,重孙进程很快执行完,将处理机还给孙进程,孙进程很快执行完,将处理机还给子进程;子进程继续往下执行,执行到第二个 fork() 函数,又创建一个进程 forktree,称之为第二孙进程,并获得处理机执行,此进程很快执行完,将处理机还给子进程,子进程也很快执行完,将处理机还给父进程,父进程 P>0 执行 if 语句,运行 fork() 函数,又创建一个进程 forktree,称之为第二子进程,此进程获得处理机执行很快运行完,将处理机还给父进程,父进程运行 sleep(15) 语句,休眠 15 秒,用 pstree 命令查询进程树。 (三)进程之间的关系 1. 运行程序,分析运行结果。 #include main(){ int p,x,ppid,pid; x=0; p=fork(); if(p>0) { printf("parent output x=%d\n",++x); ppid=getpid(); printf("This id number of parent is:ppid=%d\n",ppid); } else { printf("child output x=%d\n",++x); pid=getpid(); printf("This id number of child is:pid=%d\n",pid); } } 运行结果: Parent output x=1 This id number of parent is:ppid=3110 Child output x =1 This is number of child is:pid=3111 分析:fork 创建进程的时候子进程与父进程共享代码区,子进程复制父进程的数据区,所以,两个进程中的数据互不影响都是 1。 (四)进程的竞争资源 1. 编写一个死循环程序,观察进程的行为。 #include main(){ while(1){ } } 实验步骤: 1. 编译:gcc loop.c –o loop 2. 运行:./loop & 本实验报告旨在让学生掌握 Linux 中进程的创建方法及执行情况,深入理解进程、进程树等概念,并掌握系统调用 exit() 和 _exit() 的使用。此外,还将分析进程竞争资源的现象,并学习解决进程互斥的方法。
2025-10-14 17:10:57 51KB 文档资料
1