目前人为扭曲的图像质量评价(IQA)数据库规模较小,内容有限。较大的 IQA 数据库内容多样化,有利于 IQA 深度学习的发展。我们创建了两个数据集,康斯坦茨人为扭曲图像质量数据库(kADID-10k)和康斯坦茨人为扭曲图像质量集(kADis-700k)。前者包含81个原始图像,每个图像在5个水平上被25个失真降级。后者有140,000个原始图像,每个有5个降级版本,其中失真是随机选择的。我们在 KADID-10k 上进行了一个主观的 IQA 众包研究,得到了每幅图像30个退化类别评分(DCR)。我们认为,注释集 KADID-10k 和未标记集 KADIS-700k 可以通过弱监督学习充分挖掘基于深度学习的 IQA 方法的潜力
1