医学影像DICOM文件是医疗领域中用于存储和交换医学影像信息的国际标准格式。DICOM(Digital Imaging and Communications in Medicine)标准由美国放射学会(ACR)和国家电气制造协会(NEMA)共同制定,旨在实现不同厂商的医学影像设备和系统之间的兼容性和互操作性。DICOM文件不仅包含了影像数据,还包括了丰富的元数据,这些元数据描述了影像的获取方式、患者信息、扫描参数等详细信息。 DICOM标准支持多种类型的医学影像,包括X射线、CT、MRI、超声以及核医学图像等。每个DICOM文件由两部分组成:文件元数据头(DICOM Header)和图像数据。文件元数据头采用了标签值对(Tag-Value Pairs)的方式来存储信息,这些标签是预定义的代码,用于标识信息的类型。例如,标签(0010,0010)表示患者姓名,标签(0008,0060)表示影像模态。 医学影像DICOM文件的重要性在于它能够保证影像信息在各种医疗设备和信息系统之间的无缝传输,这对于临床诊断、治疗规划和医学研究至关重要。医疗专业人员可以利用DICOM文件进行图像的后处理,如窗宽窗位调整、三维重建、病灶测量等操作,以获得更准确的诊断信息。 由于DICOM文件包含了敏感的患者信息,因此在存储和传输过程中必须遵守相关的隐私保护和数据安全规定。医疗单位通常需要采取加密措施,并确保只有授权人员可以访问这些文件。 在技术层面,DICOM文件的开发和应用推动了医学影像技术的进步,促进了远程医疗、图像引导的手术和个性化治疗的发展。随着医疗信息化的不断深入,DICOM标准也在不断更新,以适应新的技术和医疗需求,如整合人工智能技术来提高影像分析的准确性和效率。 DICOM文件不仅在医院内部的信息系统中得到广泛应用,它还是医学影像学教育和研究的重要资源。通过共享DICOM文件,医疗专家和研究者能够进行案例研究、比较诊断结果,并开发新的影像分析工具,进而提升整个医疗行业的诊疗水平。 DICOM文件的广泛应用和重要性使其成为了医学影像领域不可或缺的一部分。它是连接现代医学影像设备、信息技术和临床实践的桥梁,为医疗专业人员提供了强大的工具,以更好地理解和治疗疾病。随着医学影像技术的不断发展和创新,DICOM标准也在持续进化,以满足未来医疗的挑战和需求。
2025-06-19 10:41:57 31.51MB
1
内容概要:本文详述了使用 DeepSeek R1 Distill 实现大模型微调入门的实际操作。主要内容涵盖如何利用 unsloth 工具快速加载和设置 DeepSeek R1 模型(包括 LLaMA 和 Qwen),并对模型进行了医学问题回答的实验,指出了初步效果欠佳的现象。接着,采用一种最小可行性实验方法对模型进行小规模微调以改善问答质量,具体展示了从数据集准备、模型设置、训练启动到初步验证的全过程。最后扩展到了全量数据的大规模微调,提升了医学专业问答的效果,实现了更为精确的答案输出。 适合人群:从事深度学习研究和技术人员,特别是对大规模语言模型及其医学应用场景感兴趣的科研人员及工程师。 使用场景及目标:本教程适合希望通过快速入门和动手实践深入了解大模型在医学领域的问答系统建设的专业人士。通过此项目的学习,读者可以掌握如何有效地使用 unsloth 对现有大模型进行特定领域内的精细调整,并优化其性能。 其他说明:为了更好地理解和复现实验过程,文中不仅提供了必要的代码片段,还给出了详细的配置细节。此外,在实验过程中涉及的关键参数选择也有较为深入的介绍。
2025-05-31 15:34:26 1.66MB 深度学习 自然语言处理
1
CVPR2024医学图像相关文章整理,包含了医学图像的超分、配准、分割以及生成
2025-05-23 20:27:06 4KB 毕业设计
1
特征选择与PCA用于心脏病预测模型分类 心脏病是全球最主要的致死原因之一,根据世界卫生组织(WHO)的报告,每年有1790万人死亡。由于导致超重和肥胖、高血压、高血糖血症和高胆固醇的不良行为,心脏病的风险增加。为了改善患者诊断,医疗保健行业越来越多地使用计算机技术和机器学习技术。 机器学习是一种分析工具,用于任务规模大、难以规划的情况,如将医疗记录转化为知识、大流行预测和基因组数据分析。近年来,机器学习技术在心脏病预测和诊断方面的应用日益广泛。研究人员使用机器学习技术来分类和预测不同的心脏问题,并取得了不错的成果。 本文提出了一种降维方法,通过应用特征选择技术来发现心脏病的特征,并使用PCA降维方法来提高预测模型的准确率。该研究使用UCI机器学习库中的心脏病数据集,包含74个特征和一个标签。通过ifX ML分类器进行验证,随机森林(RF)的卡方和主成分分析(CHI-PCA)具有最高的准确率,克利夫兰数据集为98.7%,匈牙利数据集为99.0%,克利夫兰-匈牙利(CH)数据集为99.4%。 特征选择是机器学习技术中的一种重要技术,用于删除无用特征,减少数据维度,并提高算法的性能。在心脏病预测方面,特征选择技术可以用于选择与心脏病相关的特征,如胆固醇、最高心率、胸痛、ST抑郁症相关特征和心血管等。 PCA是一种常用的降维方法,通过将高维数据降低到低维数据,提高数据处理的效率和准确率。在心脏病预测方面,PCA可以用于降低数据维度,提高预测模型的准确率。 此外,本文还讨论了机器学习技术在心脏病预测和诊断方面的应用,如Melillo等人的研究使用机器学习技术对充血性心力衰竭(CHF)患者进行自动分类,Rahhal等人的研究使用深度神经网络(DNN)分类心电图(ECG)信号,Guidi等人的研究使用临床决策支持系统(CDSS)对心力衰竭(HF)进行分析。 本文提出了一种结合特征选择和PCA的降维方法,用于心脏病预测模型分类,并取得了不错的成果。机器学习技术在心脏病预测和诊断方面的应用日益广泛,特征选择和PCA降维方法将在心脏病预测和诊断方面发挥着越来越重要的作用。
2025-05-21 10:53:54 1.17MB 医学信息学
1
本代码可以用于显示高维医学图像,且是img或mat等格式
2025-05-14 19:36:03 687B matlab 显示图像
1
内容概要:本文介绍了带有注意力机制(SE模块)的U-Net神经网络模型的构建方法。通过定义多个子模块如DoubleConv、Down、Up、OutConv和SELayer,最终组合成完整的UNet_SE模型。DoubleConv用于两次卷积操作并加入批归一化和激活函数;Down模块实现了下采样;Up模块负责上采样并将特征图对齐拼接;SELayer引入了通道间的依赖关系,增强了有效特征的学习能力。整个UNet_SE架构由编码器路径(down1-down4)、解码器路径(up1-up4)以及连接两者的跳跃连接组成,适用于医学图像分割等任务。 适合人群:有一定深度学习基础,特别是熟悉PyTorch框架和卷积神经网络的科研人员或工程师。 使用场景及目标:①研究医学影像或其他领域内的图像分割问题;②探索SE模块对于提高U-Net性能的作用;③学习如何基于PyTorch搭建复杂的深度学习模型。 其他说明:本文档提供了详细的类定义与前向传播过程,并附带了一个简单的测试用例来展示模型输入输出尺寸的关系。建议读者深入理解各个组件的功能,并尝试修改参数以适应不同的应用场景。
2025-05-09 18:28:15 4KB PyTorch 深度学习 卷积神经网络 UNet
1
# 基于深度学习的医学图像报告生成系统 ## 项目简介 本项目是一个基于深度学习的医学图像报告生成系统,旨在通过结合自然语言处理(NLP)和图像处理技术,自动生成针对医学X光图像的诊断报告。系统能够从输入的X光图像中提取关键信息,并生成详细的医学报告描述,帮助医生快速获取图像信息,提高诊断效率。 ## 项目的主要特性和功能 1. 图像特征提取使用预训练的CheXNet模型对X光图像进行特征提取,获取图像的高级表示。 2. 注意力机制在生成报告时,模型使用注意力机制关注图像中的关键区域,确保生成的报告内容准确且相关。 3. 文本处理采用LSTM(长短期记忆)网络处理文本数据,生成连贯且语义丰富的医学报告描述。 4. 多模态融合结合图像和文本信息,生成更加全面和准确的医学报告,确保信息的完整性和准确性。 5. 模型训练与评估提供完整的模型训练流程,包括数据加载、模型编译、训练、验证和评估,确保模型的性能和可靠性。
2025-04-27 21:32:00 1.71MB
1
CVC-ClinicDB息肉医学图像分割公开数据集,内涵612张图片,612张图片标签(也可自行划分训练集与测试集)。科研小白初入图像分割领域必备数据集,深度学习模型常用!!!!小白必要数据集!!!
2025-04-26 15:49:36 211.36MB 数据集
1
FMRIB's Software Library - FMRIB 是 英国牛津大学脑功能磁共振成像中心,FSL 则是他们开发的一个软件库。 由 Stephen Smith 教授开发,发布于 2000年 - 适用于所有操作系统 - 用于结构 MRI、功能 MRI(任务、静息)、扩散 MRI的分析 - MRI, CT数据的预处理和分析 - MRI, CT数据的查看 fsl官网https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ fsl培训课程:https://fsl.fmrib.ox.ac.uk/fslcourse/2019_Beijing/index.html
2025-04-23 09:24:08 101KB 图像处理
1
BUSI(Breast Ultrasound Image)是一个包含乳腺超声图像的分类和分割数据集。该数据集包括了 2018 年收集的乳腺超声波图像,涵盖了 25 至 75 岁的 600 名女性患者。数据集由 780 张图像组成,每张图像的平均大小为 500*500 像素。这些图像被划分为三类:正常、良性和恶性。而在良性和恶性乳腺超声图像中,还包含了对应胸部肿瘤的详细分割标注,为深入研究和精准诊断提供了关键信息。这份数据集不仅为乳腺癌研究提供了丰富的图像资源和宝贵支持。 乳腺超声成像技术是一种常用的乳腺疾病检查方法,它通过超声波来获取乳腺组织的图像,具有无创、无痛、操作简便、成本低等特点,是早期发现乳腺病变的重要手段之一。BUSI乳腺超声图像数据集是专门为乳腺病变的分类和分割研究而构建的,对于医疗影像学以及人工智能辅助诊断领域具有重要价值。 数据集中的图像来自2018年的收集,涵盖了广泛年龄段的女性患者,从25岁至75岁不等。由于乳腺疾病的发病与年龄有一定关联,不同年龄段的女性患者可能表现出不同的超声图像特征,这对于研究乳腺病变的年龄分布特征、不同年龄段的发病风险评估等都提供了宝贵的信息。 数据集包含了780张高分辨率的超声图像,每张图像的平均大小为500x500像素,这样的分辨率足以捕捉乳腺组织的细微结构,对于病变区域的辨识和分析至关重要。图像被分为三个主要类别:正常、良性以及恶性。这种分类对于医疗专业人员在临床中进行快速准确的诊断提供了直接帮助,同时也为计算机辅助诊断(CAD)系统的学习与验证提供了基础数据。 在良性与恶性图像中,数据集还包含了详细的肿瘤分割标注,标注区域通常指的是病变的轮廓或边缘,这对于图像分割、计算机视觉识别等任务至关重要。通过这些详细标注,研究人员和工程师可以训练和测试更为精准的图像分割算法,识别和量化肿瘤区域,进而辅助医生在制定治疗方案时做出更为科学的决策。 除了图像本身,该数据集对于深入研究乳腺癌的潜在病理机制、影像学特征与病理诊断之间的联系提供了坚实的数据支撑。医生和科研人员可以利用这些数据进行模式识别、图像分析,以及探索可能存在的影像学标志物,这些标志物可能成为未来诊断乳腺癌的新途径。 此外,BUSI乳腺超声图像数据集还支持跨学科合作,如医学影像学、数据科学和人工智能领域的结合,有助于推动医疗影像分析技术的进步。通过构建和应用深度学习模型,可以实现从传统影像学检查到人工智能辅助诊断的转变,提高乳腺癌的筛查和诊断效率。 BUSI乳腺超声图像数据集不仅为乳腺癌的基础和临床研究提供了丰富的图像资源,也为开发和验证智能化的医学影像分析工具提供了重要的数据支撑,具有较高的应用价值和科研意义。
2025-04-21 11:35:32 159.94MB 医学图像数据集
1