内容概要:本文档主要介绍了如何在Blender中将线体转换为三维管线模型。首先,通过GIS插件导入投影shp数据,选择Web墨卡托投影坐标系,生成三维线体。接着,在物体模式下选择线体并将其转换为曲线,再添加一个圆环作为截面形状。然后,在属性面板中设置曲线的倒角为物体类型,并选中刚才添加的圆环,从而生成管线结构。最后,可以在转换为网格前调整管线形状,确保修改器仍有效,若不再需要修改,则可以删除曲线和圆环并导出模型。; 适合人群:对Blender有一定了解,希望学习如何将二维线体转换为三维管线模型的用户,特别是从事地理信息系统(GIS)相关工作的专业人士。; 使用场景及目标:① 使用GIS插件导入地理数据并进行初步处理;② 掌握Blender中将线体转换为曲线的具体步骤;③ 学习如何通过添加圆环截面来构建三维管线模型;④ 掌握在转换为网格前后调整管线形状的方法。; 其他说明:文档提供了详细的步骤指导,包括关键操作的具体位置和参数设置。此外,还附带了两个参考链接,供用户进一步了解和学习。用户应按照文档中的步骤逐步操作,确保每一步都正确无误,以达到预期效果。
2025-07-08 10:23:11 5.18MB Blender GIS 3D建模 Shapefile
1
Webots轮足机器人仿真与运动控制解:代码、模型与调速功能一览,Webots仿真下的轮腿机器人与五杆双足轮式机器人的运动控制实现与功能详解,Webots轮腿机器人,轮足机器人,五杆双足轮式机器人仿真,并联腿结构仿真。 代码是c编写的,有详细的注释。 提供完整模型以及代码。 涉及PID和运动学逆解,实现运动控制。 可以通过使用键盘按键实现前进,后 ,左转,右转,原地转向,抬升,降落,跳跃动作并调速,同时在运动过程中可以调节双腿高度保持平衡等功能。 提供代码的注释 ,Webots轮腿机器人; 轮足机器人; 五杆双足轮式机器人仿真; 并联腿结构仿真; 运动控制; 调速功能; 运动学逆解; PID; 键盘按键控制动作; 抬升、降落、跳跃动作; 平衡调节。,C语言:轮足运动控制仿真系统与运动学逆解的完整模型与代码解析
2025-07-07 19:21:48 292KB
1
ARM+FPGA架构运动控制卡方案:原理图、PCB图、源码解析,ARM+FPGA运动控制卡 运动控制卡方案 运动控制卡方案 运动控制卡 方案 资料包含此运动控制卡原理图,PCB图, FPGA源码,ARM去掉算法后的框架源码,联系后发邮箱。 本运动控制卡采用ARM单片机+FPGA架构; ARM单片机是基于Cortex-M3内核的LM3S6911,插补核心算法均在该ARM内完成,一方面通过以太网与上位机界面交加工数据,另一方面与FPGA(ALTERA的EP1C3)交加工脉冲计数与IO开关量等相关参数。 FPGA主要负责实时性的功能和开关量的扩展。 ,核心关键词:ARM+FPGA运动控制卡;运动控制卡方案;原理图;PCB图;FPGA源码;ARM框架源码;Cortex-M3内核;插补核心算法;以太网通讯;FPGA实时性功能;开关量扩展。,ARM+FPGA运动控制卡:高精度实时控制方案
2025-07-07 19:13:12 848KB xbox
1
内容概要:本文详细介绍了永磁同步电机在MotorCAD中的仿真流程,涵盖前期准备、创建新工程、定义电机几何结构、设置材料属性、绕组设置、仿真计算设置、运行仿真、结果查看与分析等环节。每个步骤都配有详细的参数设置指导,并提供了Python脚本示例,用于自动化和优化仿真过程。此外,还强调了仿真过程中需要注意的关键点,如槽满率、冷却方式、温度场设置等。 适合人群:从事电机设计与仿真的工程师和技术人员,尤其是对永磁同步电机感兴趣的研究人员。 使用场景及目标:帮助用户掌握MotorCAD的基本操作和高级功能,提高仿真效率和准确性,减少手动操作的时间成本。适用于电机设计初期的参数设定、中期的仿真优化以及后期的结果分析。 其他说明:文中提供的Python脚本可以帮助用户快速搭建模型、配置参数、执行仿真和分析结果,极大提升了工作效率。同时,附带的视频和文档资料进一步加深了理解和实践效果。
2025-07-07 14:25:11 1.24MB
1
K永磁同步风力发电机仿真模型,新能源风力发电机仿真,含风力机建模,有报告三十页一万字+,备注邮箱。 ,深入解析K永磁同步风力发电机仿真模型:新能源风力发电机流程仿真及风力机建模技术详解,附三十万字+专业报告及邮箱联系,深度解析:K永磁同步风力发电机仿真模型与新能源风力发电机仿真报告——含三十页万字报告详解及风力机建模实践,核心关键词:K永磁同步风力发电机仿真模型; 新能源风力发电机仿真; 风力机建模; 报告; 三十页一万字+; 邮箱。,K永磁同步风力发电机仿真模型研究:新能源风力发电机含机建模深度解析报告
2025-07-07 13:43:23 2.38MB
1
最新java面试八股文,最新最
2025-07-07 12:57:16 1.2MB Java 面试技巧
1
深入解析双向桥LLC和CLLC拓扑双闭环控制:设计步骤、原理、参数计算选型(含MATLAB Simulink仿真文件),双向桥LLC和CLLC拓扑的双闭环控制:设计步骤、原理、参数计算选型及MATLAB Simulink仿真文件,双向桥LLC CLLC拓扑双闭环控制,详细的设计步骤,原理,参数计算选型,本人在读研究生,双闭环 (默认发MATLAB simulink仿真文件) ,核心关键词:双向桥LLC CLLC拓扑; 双闭环控制; 设计步骤; 原理; 参数计算选型; MATLAB Simulink仿真文件; 在读研究生。,研究生论文:双向桥LLC CLLC拓扑双闭环控制设计原理与参数计算选型及MATLAB仿真实现
2025-07-07 10:41:09 557KB sass
1
双向桥LLC谐振变换器与隔离型双向变换器的交流电网仿真研究:变频控制与闭环策略分析,双向桥LLC谐振变换器与隔离型双向变换器的交流电网仿真研究:变频控制与闭环策略探讨,双向桥LLC谐振变器并入交流电网仿真 隔离型双向变器 正向LLC,反向LC,CLLC拓扑 变频控制,闭环控制 ,双向桥LLC谐振变换器; 交流电网仿真; 隔离型双向变换器; 正向LLC/反向LC/CLLC拓扑; 变频控制; 闭环控制,双向桥LLC谐振变换器与交流电网并网仿真研究:正向反向拓扑与控制策略 在电力电子领域,双向桥LLC谐振变换器作为一种新型的电力转换设备,近年来受到了广泛的关注。它具有高效率、高功率密度以及良好的电磁兼容性等优点,使其成为电力转换技术中的热门研究对象。尤其是在交流电网仿真中,其变频控制与闭环策略的研究对于提高电网的稳定性和可靠性具有重要的实际意义。 双向桥LLC谐振变换器的核心优势在于其能够实现电能的双向流动,即不仅能将交流电转换为直流电,也能将直流电转换回交流电。这种特性使得它特别适合于需要能量双向转换的应用场景,例如在可再生能源发电、电动汽车充电以及储能系统中。 在交流电网的并网应用中,双向桥LLC谐振变换器能够实现与电网的高效对接,这对于电网的负荷平衡、故障隔离以及系统稳定性等方面都有着积极的影响。通过合理设计变频控制算法,可以使变换器在不同的工作模式下,如电网故障、负载波动等情况下,依然保持稳定运行。 闭环控制策略是另一项关键研究内容。通过对变换器输出电压、电流以及频率等参数进行实时监控,并采用先进的控制算法进行反馈调整,可以确保双向桥LLC谐振变换器在不同工作条件下的稳定性和效率。闭环控制策略的实施,不仅可以提高电能的质量,还可以有效延长设备的使用寿命。 在实际应用中,正向LLC、反向LC以及CLLC拓扑结构是常见的变频控制与闭环控制的实现方式。正向LLC拓扑特别适用于升压或降压场景,而反向LC和CLLC拓扑则适用于交流到直流或直流到交流的转换。这些拓扑结构的设计与优化,直接影响到变换器的性能表现。 此外,隔离型双向变换器在设计中还应考虑到隔离需求。在某些应用场景中,由于安和性能的要求,必须在变换器的输入和输出之间提供电气隔离。隔离型变换器能够在不影响电气性能的同时,提供必要的隔离,保证系统稳定运行。 在仿真层面,通过构建精确的数学模型,并利用仿真软件进行仿真实验,可以有效地预测和分析双向桥LLC谐振变换器的行为。仿真研究可以揭示变换器在各种工作状态下的性能表现,以及在不同控制策略下的反应特性。这为设计和优化变换器提供了重要的理论依据。 在研究的过程中,相关的论文、文档、图片等资料都是不可或缺的。例如,双向桥谐振变换器的设计原理、性能分析、仿真模拟以及控制策略的研究等内容,都需要通过这些材料来深入探讨和理解。 双向桥LLC谐振变换器与隔离型双向变换器在交流电网仿真中的应用研究,是一个综合性强、涉及多个技术领域的研究课题。通过对变频控制和闭环控制策略的深入分析,可以推动电力变换技术的进步,为实现智能电网和高效能源管理提供技术支持。
2025-07-07 10:22:02 603KB
1
小程序进销存管理系统多用户多仓库,uniapp源码可生成H5页面和APP,前后端开源 功能 1、支持采购单录入、审核、入库、 等采购过程中的记录追踪 2、支持销、出库、销审核、出库审核、 等跟踪 3、支持产品出库、入库的数据导出 4、支持用户、仓库等管理 进销存管理系统,顾名思义,是用于管理企业进(采购)、销(销售)、存(库存)的系统。一个高效的小程序进销存管理系统,能够在企业日常运营中发挥关键作用,提升工作效率,减少资源浪费,确保数据的准确性和业务流程的规范化。从给定的文件信息中可以看出,本系统支持多用户和多仓库的操作模式,并且提供了前后端开源的源码,以及能生成H5页面和APP的功能,为不同规模的企业提供了灵活的应用选择。 具体来说,系统具备如下功能特点: 1. 采购管理功能:系统能够支持采购单的录入、审核、以及入库操作。这意味着用户能够记录采购过程中的每一项操作,并且对整个采购流程进行追踪,确保采购的物品能够及时准确地入库,满足企业运营需求。 2. 销售和出库管理功能:系统同样支持销售和出库的流程,包括销售操作、出库操作、销审核和出库审核。这些功能确保了销售活动的顺利进行,同时对销售和出库的过程进行了详细的记录和管理,有助于跟踪产品流向和销售情况。 3. 数据导出功能:该系统支持产品出库、入库数据的导出功能。数据导出是数据分析和决策的重要基础,企业可以据此导出相关数据进行分析,从而优化库存管理和销售策略。 4. 用户和仓库管理功能:系统提供了用户和仓库的管理功能,能够对不同的用户角色进行设置,并且管理不同仓库的信息。这有助于实现精细化的权限控制和仓库资源的有效分配。 除了上述功能,根据文件名称列表,我们可以发现文档内容可能包含了系统的实现方法、操作指导、源码解析和应用案例等详细信息,这有助于用户深入理解系统的工作原理和操作方式。 在技术实现方面,系统采用了uniapp框架,这意味着它具有跨平台的优势,能够同时在多个操作系统上运行,增加了应用的便捷性和可访问性。源码的开源特性使得企业能够根据自己的需求进行二次开发,从而更好地适应业务变化。而H5页面和APP的生成能力,让系统不仅限于小程序使用,提供了更为丰富的应用场景和用户界面。 从标签“gulp”可以推断,系统可能使用了gulp这一前端构建工具,它被广泛用于自动化处理一些前端工作,比如压缩、合并文件,提高开发效率。 小程序进销存管理系统通过其面的功能支持、开源的代码资源、多平台的应用能力以及灵活的用户和仓库管理,能够为各种规模的企业提供一个高效、便捷、可扩展的进销存解决方案。
2025-07-06 18:54:52 795KB gulp
1
iTOP-4412开发板是基于ARM架构的开发板,主要用于嵌入式系统的学习和开发。Android操作系统是由Google主导开发的一个基于Linux内核的开源操作系统,广泛应用于移动设备。源码编译是将操作系统源代码通过编译器转化成可在特定硬件上运行的二进制文件的过程。本文详细记录了在iTOP-4412开发板上编译Android操作系统源码的完整流程以及遇到的问题和解决方法。 编译Android系统源码需要相对较高的硬件资源。由于笔者的笔记本电脑内存较小,最初只分配了1GB内存给虚拟机进行编译,这导致在编译过程中内存耗尽,系统终止了编译任务,并显示了"Killed"错误。由于Android编译系统依赖于足够的内存资源,以支持编译过程中的大量数据处理,1GB内存远远不足以满足需要。因此,当内存不足时,系统会杀死一些进程来释放内存,导致编译中断。 对此,文章提供了一个有效的解决方案,即增加虚拟机的内存分配至4GB,并建议虚拟机的初始硬盘空间至少分配60GB,以便提供足够空间用于编译时产生临时文件和中间文件。如果电脑物理内存确实有限,可以使用SWAP分区来扩展虚拟内存,具体方法包括:创建一个SWAP文件、格式化该文件为SWAP分区、将其挂载并永久配置在系统启动时加载。 在解决了内存问题之后,编译过程得以继续。在文章中提到,最终生成了四个关键文件:system.img、ramdisk-uboot.img、u-boot-iTOP-4412.bin和zImage。这些文件分别包含了Android系统的文件系统、ramdisk镜像、uboot引导加载器的二进制文件和Linux内核映像。通过fastboot工具,这些文件被烧写到开发板的存储设备中,使iTOP-4412开发板能够启动并运行Android操作系统。 在文章的后半部分,作者提到了第二个遇到的问题,尽管具体内容没有详细展开,但大致提到了通过vi编辑器修改fstab文件。fstab(filesystem table)是Unix和类Unix系统中的文件系统表,它告诉操作系统有关当前安装的所有文件系统的类型、挂载点、文件系统状态等信息。在某些情况下,如果fstab配置不正确,可能会导致系统启动时无法正确挂载文件系统,或者影响系统的存储配置。修改fstab文件往往是为了调整这些设置。 通过修改fstab文件解决编译过程中的问题后,Android源码编译过程顺利结束,四个文件成功生成,并通过fastboot烧录到iTOP-4412开发板上。至此,开发板能够正常运行Android操作系统,开发者可以进一步进行应用开发、系统定制或性能测试等后续工作。 总结来说,本文针对iTOP-4412开发板上Android操作系统的源码编译过程进行了深入的探讨和记录,详述了硬件资源的要求、编译过程中的常见问题以及相应的解决方案,具有很高的实用价值和参考意义,对于进行类似项目的开发者来说是一份宝贵的经验总结。
1