基于Python的实用深度学习概述 如果你对机器学习很好奇,但不知道从哪里开始,这就是你一直在等待的书。它专注于被称为深度学习的机器学习子领域,解释了核心概念,并为您提供了开始构建自己的模型所需的基础。而不是简单地概述使用现有工具包的教程,实用深度学习教你为什么使用深度学习,并将激励你进一步探索。 你所需要的是对计算机编程和高中数学的基本熟悉——这本书将涵盖其余的内容。在介绍Python之后,您将浏览关键主题,如如何构建良好的训练数据集,使用scikit-learn和Keras库,并评估您的模型的性能。 您还将了解: 如何使用经典的机器学习模型,如k-最近邻,随机森林,和支持向量机 神经网络是如何工作的,又是如何训练的 如何使用卷积神经网络 如何从零开始开发一个成功的深度学习模型 您将在此过程中进行实验,构建最终的案例研究,其中包含您所学到的所有内容。 您将使用的所有代码都可以在这里获得: https://github.com/rkneusel9/PracticalDeepLearningPython/ 这是对这个动态的,不断扩大的领域的完美介绍,实用深度学习将给你的技能和信心潜入自己的机器学习项目。
2021-10-26 17:06:01 13.66MB python 深度学习
1
Twenty-five years have passed since the publication of the Russian version of the book Estimation of Dependencies Based on Empirical Data (EDBED for short). Twentyfive years is a long period of time. During these years many things have happened. Looking back, one can see how rapidly life and technology have changed, and how slow and difficult it is to change the theoretical foundation of the technology and its philosophy. I pursued two goals writing this Afterword: to update the technical results presented in EDBED (the easy goal) and to describe a general picture of how the new ideas developed over these years (a much more difficult goal). The picture which I would like to present is a very personal (and therefore very biased) account of the development of one particular branch of science, Empirical Inference Science. Such accounts usually are not included in the content of technical publications. I have followed this rule in all of my previous books. But this time I would like to violate it for the following reasons. First of all, for me EDBED is the important milestone in the development of empirical inference theory and I would like to explain why. Second, during these years, there were a lot of discussions between supporters of the new paradigm (now it is called the VC theory1) and the old one (classical statistics). Being involved in these discussions from the very beginning I feel that it is my obligation to describe the main events. The story related to the book, which I would like to tell, is the story of how it is difficult to overcome existing prejudices (both scientific and social), and how one should be careful when evaluating and interpreting new technical concepts. This story can be split into three parts that reflect three main ideas in the development of empirical inference science: from the pure technical (mathematical) elements of the theory to a new paradigm in the philosophy of generalization. The first part of the story, which describes the mai
2021-10-26 15:37:02 1.01MB 机器学习
1
使用MATLAB/Simulink基于模型设计的理念开发两轮自平衡乐高机器人,该文档详细介绍了虚拟仿真和实物控制的操作。
2021-10-26 11:36:22 2.88MB Simuli LEGO EV3 MBD
1
基于FPGA的洗衣机系统设计,用的是VerilogHDL语言
2021-10-25 21:14:29 728KB VerilogHDL WashingMachine
1
Sliding-Window-Face-Detection-Based-on-HOG-features-and-SVM-Classifier Update: data数据百度网盘 链接: 提取码:0amu 复制这段内容后打开百度网盘手机App,操作更方便哦--来自百度网盘超级会员V4的分享 Update: vlfeat库 链接: 提取码:p31i 复制这段内容后打开百度网盘手机App,操作更方便哦--来自百度网盘超级会员V4的分享 注意: 进行该实验前需要安装vlfeat库,安装方法为: a)下载 VLFeat 的安装包在其解压到任意目录下。 b)在 matlab 中新建 startup.m 文件 c)在 startup.m 文件中输入 run('......\vlfeat-0.9.21\toolbox\vl_setup')并运行,即可安装 d)在 matlab 命令行中输入 vl_ver
2021-10-23 10:30:40 74.93MB HTML
1
基于扩张神经网络(Divolved Convolutions)训练好的医疗领域的命名实体识别工具,这里主要引用模型源码,以及云部署方式供大家交流学习。 环境 阿里云服务器:Ubuntu 16.04 Python版本:3.6 Tensorflow:1.5 第一步:来一个Flask实例,并跑起来: 使用的是Pycharm创建自带的Flask项目,xxx.py from flask import Flask app = Flask(__name__) @app.route('/') def hello_world(): return 'Hello World!' if __name__ == '__main__': app.run() 执行python xxx.py就可以运行在浏览器中测试若直接在dos窗口中:输入命令也可测试。 第二部:服务器配置 服务器python版本为3.x 安装pi
2021-10-23 09:53:59 4.12MB Python
1
Estimation of!dependences¥based on(empirical data
2021-10-23 09:10:01 4.87MB 机器学习
1
基于L-峭度的轴承故障诊断,刘绍鹏,侯澍旻,Kurtosis (峭度)被广泛应用监测机械设备故障信号。但是,峭度对于随机冲击非常敏感。信号中只要存在有随机冲击,峭度值就变得很大。�
2021-10-22 16:50:21 465KB 首发论文
1
基于GAN的HRRS图像生成样本分类 基于GAN的方法用于生成高分辨率遥感数据,以进行数据增强和图像分类。 深度学习框架是:Tensorflow。 Python版本:2.7 CUDA版本:9.1 端子命令: 数据集为UCM,NWPU-RESISC45:(1)UC Merced数据集 (2)NWPU-RESISC45数据集
2021-10-21 17:50:13 4.7MB Python
1
Arknights Auto Helper 明日方舟辅助脚本,分支说明如下 分支 说明 master 开发者认为的 稳定版本 dev 开发、测试新功能的分支 release 目前可以应用的GUI版本 shaobao_adb 经过封装可以移植的ADB方法类 功能说明: 自动重复刷图,使用理智药、碎石 识别掉落物品,上传企鹅物流数据统计 自动选图(从主界面开始到关卡信息界面) 自动领取任务奖励 公开招募识别 基建查房、一键领取(部分) 0x01 运行须知 安装 从源代码安装 需要 Python 3.8 或以上版本。 :warning: 不建议从 GitHub 下载 zip 源码包安装:这样做会丢失版本信息,且不便于后续更新。 git clone https://github.com/ninthDevilHAUNSTER/ArknightsAutoHelper cd ArknightsAutoHelper ##
2021-10-20 22:35:42 7.59MB python adb arknights Python
1