压缩包含一个完整的Qt控制台工程,注释纤细,调试运行通过,也可以直接移植到win32上。(工程中有两个主程序,main.cpp中样本数据格式为opencv的Mat矩阵。main1.c中样本为float型的二维数组。编译的时候把不同的主程序添加进工程即可。main1.cpp可以不要opencv的库。)
2023-04-12 21:20:46 1.16MB libsvm 支持向量机 分类器
1
基于运动想象的脑电信号特征提取及分类算法研究_李丽君.caj.download
2023-04-12 16:59:39 13.35MB
1
超参数调整 使用分类器算法使用GridSearchCV进行超参数调整
2023-04-12 02:57:59 3KB Python
1
详细介绍了国内外集成分类算法,对集成分类算法的两个部分(基分类器组合和动态更新集成模型)进行了详细综述,明确区分不同集成算法的优缺点,对比算法和实验数据集。并且提出进一步的研究方向和考虑的解决办法。
2023-04-12 00:08:18 1.29MB 数据流分类 集成学习 概念漂移
1
卷积神经网络 Python tensorflow keras CNN VGG16 imagenet 预训练权重 人脸识别分类 训练集测试集评估准确率 maxpolling dropout jupyter notebook numpy pandas 数据分析 数据挖掘 深度学习 机器学习 人工智能
2023-04-11 20:51:39 47.9MB 深度学习 cnn 卷积神经网络 数据挖掘
1
svm支持向量机python代码
2023-04-11 17:52:13 12KB SVM python
1
颜色分类leetcode 实时交通标志检测和分类 使用 SSD 的新版本将于今年夏天发布,供任何需要更高精度检测方法的人使用。 请继续关注新的更新! 1. 说明 该项目是一个使用 OpenCV 的视频交通标志检测和分类系统。 检测阶段使用图像处理技术在每个视频帧上创建轮廓并在这些轮廓中找到所有椭圆或圆。 它们被标记为交通标志的候选对象。 检测策略: 增加视频帧的对比度和动态范围 使用 HSV 颜色范围去除不必要的颜色,如绿色 使用 Laplacian of Gaussian 显示对象的边界 通过二值化制作轮廓。 检测椭圆形和圆形轮廓 在下一阶段 - 分类阶段,通过基于候选坐标从原始帧中裁剪来创建图像列表。 预训练的 SVM 模型将对这些图像进行分类,以找出它们是哪种类型的交通标志。 当前支持的交通标志(每个标志文件的名称与其在 SVM 中的类相对应): 注意: 所有属于 8 级及以上的标志都被标记为OTHERS,因为比赛需要这样做。 还有一个 0 类被标记为非交通标志 仅对当前帧中最大的标志进行裁剪和分类 每次main.py调用时都会训练 SVM 模型,在检测阶段之前,但我仍然保存模型
2023-04-11 14:56:53 26.78MB 系统开源
1
CNN-RTLSDR 使用rtl-sdr加密狗进行深度学习信号分类。 当前的预训练模型能够对4种信号进行分类:WFM,TV Secam载波,DMR信号和“其他”信号。 预先模型测试 将软件存档解压缩到某个文件夹,例如C:\ rtlsdr 转到并选择Python 3.6版本,64位图形安装程序或直接下载: : 如果您没有现代的NVIDIA图形卡,则要安装CPU版本,只需在requirements.txt中删除以下行: tensorflow-gpu==1.4.0 运行anaconda提示符,将目录更改为C:\ rtlsdr,然后运行: conda install pip pip install -r requirements.txt 仅对于Tensorflow的CUDA版本,如果已安装CPU版本,请跳过以下步骤: 下载并安装CUDA 8工具包: : 下载用于工具包8的C
2023-04-10 21:41:43 15.21MB Python
1
这段时间,自己学习了一些有关机器学习的算法,现在拿鸢尾花分类来对这四种进行巩固与回顾。 这些算法都是直接使用的skearn库的算法,并未自己编写。 鸢尾花的降维 import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris data = load_iris() y = data.target X = data.data pca = PCA(n_components=2) reduced_X = pca.fit_transform(X) re
2023-04-10 21:10:17 108KB 分类 鸢尾花
1
D-S证据理论(D-S Evidential Theory)相关资料源码打包 D-S证据理论PPT课件 C源码 java源码 Matlab源码
2023-04-10 20:54:23 2.12MB 证据理论 D-S
1