揭秘元气森林成功学:精确计算爆红,像做APP一样做饮料.pdf
2022-01-25 18:02:06 3.5MB 研究报告
品牌元气森林营销数据报告.pdf
2022-01-25 18:02:05 1.79MB 研究报告
随机森林微生物 在微生物群落中运行随机森林的演示和代码
2022-01-23 21:46:15 3.08MB HTML
1
探究森林病虫害监控策略.doc
2022-01-22 19:04:58 22KB
共3个ipynb文件,包括对于数据预处理并可视化、kmeans聚类分析客户类型、用网格搜索随机森林的最佳参数并保证AUC大于0.75.
2022-01-22 19:02:18 144KB kmeans 数据分析 随机森林 算法
1
兔子成为森林之王作文.doc
2022-01-22 09:03:17 21KB 范文
森林里的故事五年级作文.pdf
2022-01-21 14:00:20 6KB 答题
森林公园]合肥含山森林公园修建性详细规划设计.pdf
2022-01-20 17:02:27 193.07MB 森林公园]合肥含山森林公园修建性
利用python实现随机森林算法预测信用卡违约情况,使用的是海豚大数据大数据分析赛的数据
2022-01-18 16:13:38 3KB 违约预测 随机森林
Features of Random Forests It is unexcelled in accuracy among current algorithms. It runs efficiently on large data bases. It can handle thousands of input variables without variable deletion. It gives estimates of what variables are important in the classification. It generates an internal unbiased estimate of the generalization error as the forest building progresses. It has an effective method for estimating missing data and maintains accuracy when a large proportion of the data are missing. It has methods for balancing error in class population unbalanced data sets. Generated forests can be saved for future use on other data. Prototypes are computed that give information about the relation between the variables and the classification. It computes proximities between pairs of cases that can be used in clustering, locating outliers, or (by scaling) give interesting views of the data. The capabilities of the above can be extended to unlabeled data, leading to unsupervised clustering, data views and outlier detection. It offers an experimental method for detecting variable interactions.
2022-01-18 16:01:07 1.54MB 随机森林
1