多标签分类综述
意义
网络新闻往往含有丰富的语义,一篇文章既可以属于“经济”也可以属于“文化”。给网络新闻打多标签可以更好地反应文章的真实意义,方便日后的分类和使用。
难点
类标数量不确定,有些样本可能只有一个类标,有些样本的类标可能高达几十甚至上百个。
类标之间相互依赖,例如包含蓝天类标的样本很大概率上包含白云,如何解决类标之间的依赖性问题也是一大难点。
多标签的训练集比较难以获取。
如下方法来解决这个问题:
1.在传统机器学习的模型中对每一类标签做二分类,可以使用SVM、DT、Naïve Bayes、DT、Xgboost等算法;在深度学习中,对每一类训练一个文本分类模型(如:text
1