Pytorch实现全连接神经网络模型和卷积神经网络训练MNIST数据集 Pytorch实现全连接神经网络模型/卷积神经网络训练MNIST数据集,并将训练好的模型在自己的手写图片数据集上测试 目录说明: CNN文件夹是用来保存卷积神经网络模型代码,其中model.py,my_dataset.py是被自动调用的,都不需要运行 FC文件夹是用来保存全连接神经网络模型代码,其中model.py,my_dataset.py是被自动调用的,都不需要运行 dataset文件夹是保存MNIST官方数据集的文件夹,不需改动 images文件夹是用来保存REAEDME.md文件中引用的图片的,不需改动 my_mnist_dateset文件夹是用来保存自己手写数字图片与标签文件的,自己手写的图片请放在my_mnist_dateset/classify对应的文件夹中 make_ours_dataset.py文件是用来处理my_mnist_dateset文件夹下的图像并生成标签用的 requirements.txt文件是环境配置文件
pytorch实现基于卷积神经网络的手写汉字识别系统源码。包含数据集的训练和测试代码,同时包含系统可视化,UI界面的实现。pytorch实现基于卷积神经网络的手写汉字识别系统源码。包含数据集的训练和测试代码,同时包含系统可视化,UI界面的实现。pytorch实现基于卷积神经网络的手写汉字识别系统源码。包含数据集的训练和测试代码,同时包含系统可视化,UI界面的实现。pytorch实现基于卷积神经网络的手写汉字识别系统源码。包含数据集的训练和测试代码,同时包含系统可视化,UI界面的实现。pytorch实现基于卷积神经网络的手写汉字识别系统源码。包含数据集的训练和测试代码,同时包含系统可视化,UI界面的实现。pytorch实现基于卷积神经网络的手写汉字识别系统源码。包含数据集的训练和测试代码,同时包含系统可视化,UI界面的实现。pytorch实现基于卷积神经网络的手写汉字识别系统源码。包含数据集的训练和测试代码,同时包含系统可视化,UI界面的实现。
2022-06-09 20:06:19 184KB ui 人工智能 卷积神经网络 深度学习
1、资源内容:毕业设计lun-wen word版10000字+;开题报告,任务书 2、学习目标:快速完成相关题目设计; 3、应用场景:课程设计、diy、毕业、参赛; 4、特点:直接可以编辑使用; 5、使用人群:设计参赛人员,学生,教师等。 6、使用说明:下载解压可直接使用。 7、能学到什么:通过学习本课题的设计与实现, 了解不同课题的知识内容,学习内部架构和原理,掌握有关课题重要资源, 同时增加自己对不同方面知识的了解,为后续的创作提供一定的设计思路和设计启发 , 并且可以快速完成相关题目设计,节约大量时间精力,也为后续的课题创作 提供有力的理论依据、实验依据和设计依据,例如提供一些开源代码、设计原理、 原理图、电路图、毕业设计lun-wen word版10000字+;开题报告,任务书等有效的资料, 也可以应用于课程设计、diy、毕业、参赛等不同场景,而且本设计简单,通俗易通, 方便快捷,易于学习,下载之后可以直接可以编辑使用, 可以为设计参赛人员、学生、老师及爱好者等不同使用者提供有效且实用的学习资料 及参考资料,同时也是一份值得学习和参考的资料。
2022-06-09 12:05:12 13.73MB 卷积神经
基于通信信号时频特性的卷积神经网络调制识别.pdf
1
人工智能与自动化 Python课程设计卷积神经网络手写数字识别系统源代码。 流程 参数配置文件的加载 with open(params_path) as params_file: self.params = yaml.load((params_file)) 这里使用了yaml文件作为配置文件,原因是yaml文件结构比较简单简洁,可以清楚地表示出层次结构,通过参数文件的配置,可以不用修改源代码就可以配置出不同的神经网络,具体见下面layer生成的分析 加载数据集,分割训练集和测试集 使用sklearn 来获取数据集,并且进行分割 # 加载数据 digits_data, digits_target = load_digits( return_X_y=True) # 划分训练集和测试集 self.x_train, self.x_test, self.y_train, self.y_test = \ train_test_split(digits_data, digits_target, test_size=1-tr
2022-06-08 18:05:13 559KB 人工智能 自动化 python 课程设计
1.领域:FPGA,CNN卷积神经网络 2.内容:题目,vivado2019.2平台中通过verilog实现CNN卷积神经网络包括卷积层,最大化池化层以及ReLU激活层+操作视频 3.用处:用于CNN卷积神经网络算法编程学习 4.指向人群:本科,硕士,博士等教研使用 5.运行注意事项: 使用vivado2019.2或者更高版本测试,用软件打开FPGA工程,然后参考提供的操作录像视频跟着操作。 工程路径必须是英文,不能中文。
2022-06-08 12:05:19 29.36MB CNN卷积神经网络 FPGA ReLU激活层
1.领域:matlab,CNN卷积神经网络,代码中提供了转化后的mat格式,matlab可以直接读取的MNIST标准数据库 2.内容:通过MATLAB编程实现基于CNN卷积神经网络的手写数字识别算法,数据库为MNIST标准数据库+matlab操作视频 3.用处:用于CNN卷积神经网络编程学习 4.指向人群:本硕博等教研学习使用 5.运行注意事项: 使用matlab2021a或者更高版本测试,运行里面的Runme_.m文件,不要直接运行子函数文件。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。 具体可观看提供的操作录像视频跟着操作。
2022-06-08 09:10:26 28.75MB matlab cnn 算法 CNN卷积神经网络
包含编译的源码、已经编译的文件、支持pytorch1.X、无需修改源码 使用的编译环境:MSVC 2017 x64 使用的python 版本: 3.7 使用的pytorch版本:1.4 安装方式,conda进入到包含pytorch的环境,进入到该资源文件的解压文件夹,执行"python setup.py build develop"命令,即可安装成功。解压后,建议修改解压文件夹名字为DCNv2
2022-06-06 18:26:07 10.99MB windows DCNv2 深度学习 卷积神经网络
1
通过深度学习模型对室内楼道环境的视觉信息进行处理,帮助移动机器人在室内楼道环境下自主行走。为达到这个目的,将楼道环境对象分为路、门、窗户、消防栓、门把手和背景六类,通过图像的语义分割实现对象识别。在对楼道环境的六类对象进行分割的实验中发现,由于门把手比起其他对象小很多,影响了对它的识别效果;将六分类模型改为“5 2”分类模型,解决了这个问题。分类模型的基础是全卷积神经(FCN)网络,可以初步实现图像的分割。为了提高FCN网络的分割效果,从三个方面进行了实验研究:a)取出FCN网络的多个中间特征层,进行多层特征融合;b)考虑到移动机器人行走过程中视觉信息的时间序列特点,将递归神经网络(RNN)的结构纳入到FCN网络中,构成时间递归的t-LSTM网络;c)考虑到二维图像相邻像素之间的依赖关系,构成空间递归的s-LSTM网络。这些措施都有效地提高了图像的分割效果,实验结果表明,多层融合加s-LSTM的结构从分割效果和计算时间方面达到综合指标最佳。
1
基于卷积神经网络级联人脸关键点检测算法.docx
2022-06-03 09:00:12 25KB 互联网