HTML5 is more than a markup language—it's a dozen independent web standards all rolled into one. Until now, all it's been missing is a manual. With this thorough, jargon-free guide, you'll learn how to build web apps that include video tools, dynamic drawings, geolocation, offline web apps, drag-and-drop, and many other features. HTML5 is the future of the Web, and with this book you'll reach it quickly. The important stuff you need to know: Structure web pages in a new way. Learn how HTML5 helps make web design tools and search engines work smarter. Add audio and video without plugins. Build playback pages that work in every browser. Draw with Canvas. Create shapes, pictures, text, and animation—and make them interactive. Go a long way with style. Use CSS3 and HTML5 to jazz up your pages and adapt them for mobile devices. Build web apps with rich desktop features. Let users work with your app offline, and process user-selected files in the browser. Create location-aware apps. Write geolocation applications directly in the browser.
2022-05-07 19:34:48 20.42MB html5
1
如何处理数据缺失值?INRIA研究员Gael 《机器学习缺失值处理》54页ppt教程,为你讲解一个关于机器学习的教程,以建立缺失值的预测模型。这教程涵盖了理论结果(统计学习)和实践建议,重点介绍了使用scikit-learn在Python中的实现
2022-04-22 18:05:10 7.12MB python scikit-learn 机器学习 学习
Missing artifact com.oracle:ojdbc14:jar:10.2.0.3.0-附件资源
2022-03-26 14:08:20 106B
1
解决Navicat运行报“Missing required library libmysql_d.dll 126”的问题,下载之后放到 Navicat安装目录 下,重新打开程序即可。
2022-02-23 08:53:13 533KB libmysql_d
1
Windows Server 2003操作系统源代码缺少文件下载win2003_x86-missing-binaries.7z软件包,其中包含x86fre和x86chk构建的缺失二进制文件。
2021-12-30 17:04:05 743.39MB binaries_v2 missing-binaries win2003_x86
1
提出了一种数据丢失贝叶斯网络参数学习的优化算法。期望最大化(EM)算法是常用的参数学习算法。 EM的最大似然估计(MLE)和最大后代估计(MAP)是局部估计,而不是全局估计,不容易实现全局最优。因此,本文提出了一种基于EM算法的点估计相对误差最小优化算法(EM-MLE-MAP)。仿真和实验结果表明,该算法在转子贝叶斯网络故障诊断中具有较好的精度,当损失率小于3%时,具有较高的诊断精度。
2021-12-26 18:58:54 278KB Bayesian Networks Data Missing
1
matlab for循环代码 Tensor-Completion-for-Estimating-Missing-Values-in-Visual-Data Tensor Completion by Python and Numba 本文的算法来自Liu等的两篇论文中的HaLRTC(其余算法会在之后补全) The algorithm in this article is from HaLRTC in two papers by Liu et al.(The rest of the algorithms will be completed later) Matlab 代码来自 感谢你们的工作! Matlab from Thanks for your work! 上述网址可能无法访问,Matlab源码已经上传至此Repo. The above URL may not be accessible, Matlab source code has been uploaded to this Repo. 本项目旨在用Python实现原作者的算法,并用Numba模块对巨量的for循环进行加速。 Thi
2021-12-06 10:58:18 8.23MB 系统开源
1
书名《Applied Missing Data Analysis》应用缺失数据分析,英文版,带目录书签,高清版。
2021-11-23 11:17:42 5.3MB 数据填补 大数据 分析
1
Missing-Tag_Detection_With_Unknown_Tags-自学-理解-翻译-引文
2021-11-20 18:06:59 7.6MB RFID
1
JavaScript和jQuery实战手册源码--the missing manual示例代码合集
2021-11-11 13:49:43 3.49MB javascript jquery
1