深度元度量学习(DMML) 此存储库包含ICCV19论文的PyTorch代码:深度元度量学习,包括对Market-1501和DukeMTMC-reID数据集的人员重新识别实验。 要求 Python 3.6+ PyTorch 0.4 tensorboardX 1.6 要安装所有python软件包,请运行以下命令: pip install -r requirements.txt 数据集 正在下载 可以从下载Market-1501数据集。 可以从下载DukeMTMC-reID数据集。 准备 下载完上面的数据集后,将它们移动到项目根目录下的datasets/文件夹中,并将数据集文件夹分别重命名为“ market1501”和“ duke”。 即, datasets/文件夹应组织为: |-- market1501 |-- bounding_box_train |-- bo
1
PyTorch中的深度度量学习 Learn deep metric for image retrieval or other information retrieval. 我们的XBM被提名为2020年CVPR最佳论文。 知乎XBM上的一个博客 我写了一个知乎文章,通俗快速解读了XBM想法动机: 欢迎大家阅读指点! 推荐最近发表的不是我写的DML优秀论文: 来自康奈尔科技大学和Facebook AI 摘要:过去四年来,深度度量学习论文一直宣称准确性方面取得了长足进步,通常比十年前方法的性能提高一倍还多。 在本文中,我们将仔细研究该领域,以了解是否确实如此。 我们在这些论文的实验设置中发现了缺陷,并提出了一种评估度量学习算法的新方法。 最后,我们提供的实验结果表明,随着时间的推移,这种改进最多只能算是微不足道了。 XBM:DML的新Sota方法,被CVPR-2020接受为口服,并被提名
2021-10-17 14:51:47 44KB image-retrieval cvpr xbm deep-metric-learning
1
少量学习的原型网络 NIPS 2017论文》的代码。 如果您使用此代码,请引用我们的论文: @inproceedings{snell2017prototypical, title={Prototypical Networks for Few-shot Learning}, author={Snell, Jake and Swersky, Kevin and Zemel, Richard}, booktitle={Advances in Neural Information Processing Systems}, year={2017} } 训练原型网络 安装依赖 该代码
2021-10-08 09:58:44 209KB deep-learning pytorch metric-learning nips-2017
1
关于mnist的度量学习( 和)和t_SNE的可视化 n_pair_loss n_pair_angular_loss 用法 从终端运行pip install -r requirements.txt python src/utils/mnist_to_img.py返回由标签分隔的mnist数据python src/n_pair_train.py将模型保存到src/checkpoints/checkpoint.pth.tar并记录logs/2019_00_CNN/* python src/t_SNE.py显示t_SNE
1
Survey_of_Deep_Metric_Learning:深度度量学习和相关作品的全面调查
2021-09-24 14:30:18 102KB deep-learning tensorflow pytorch metric-learning
1
这个资源复现的是MatchNet:Unifying Feature and Metric Learning for Patch-Based Matching。对于图像匹配在深度学习方面的应用。使用的是keras框架。具体实现可以看这篇博客https://blog.csdn.net/weixin_42521239/article/details/103989934
2021-03-11 15:46:36 17.25MB keras matchnet 图像匹配 深度学习
1
code for Large Scale Metric Learning from Equivalence Constraints
2019-12-21 18:51:19 33KB person reid kissmee
1