本文详细介绍了反制无人机的核心架构、主流技术分类、典型应用场景及未来发展趋势。核心架构包括侦测识别层、决策控制中枢和反制执行单元,采用多传感器融合技术和AI分析提升目标识别精度。主流技术分为软杀伤(如电磁压制、导航欺骗)和硬摧毁手段(如动能拦截、定向能武器)。应用场景涵盖军事防御、公共安全和关键基础设施保护。未来技术将向智能化、多手段协同和小型化方向发展,同时需遵守相关法律与伦理约束。 反制无人机技术是当今世界上用于防御和控制无人机威胁的重要手段,它包括了诸多技术手段,既有软杀伤技术,如电磁压制、导航欺骗,也有硬摧毁手段,如动能拦截、定向能武器。而这些技术的实现依赖于一套复杂的系统架构,其中侦测识别层是基础,它利用多传感器融合技术,能够对无人机进行有效识别和跟踪。决策控制中枢则负责处理来自侦测识别层的信息,制定相应的反制策略。而反制执行单元则是将决策转化为实际行动,执行对无人机的干扰或拦截。 在实际应用中,反制无人机技术主要应用在军事防御、公共安全和关键基础设施保护等领域。例如在军事领域,防止敌对势力利用无人机进行侦察或攻击;在公共安全领域,防止无人机非法侵入禁飞区,威胁公共安全;在关键基础设施保护方面,保证机场、核电站等重要设施不受无人机威胁。 未来,随着无人机技术的不断进步和无人机应用的普及,反制无人机技术也将不断升级和优化。智能化是其中的一个主要趋势,未来的系统将更加依赖人工智能技术,以实现更加高效和准确的决策。同时,多手段协同作战将成为主流,通过对各种反制手段的整合,形成一套全方位的防御体系。小型化也是一个发展方向,便于设备的部署和移动。 然而,在反制无人机技术的发展过程中,法律和伦理的约束不容忽视。如何在保护社会安全和保护个人隐私之间找到平衡点,如何避免技术误用或滥用,这些都是未来发展中必须面对的问题。 反制无人机技术是一个多学科交叉融合的领域,涉及电子工程、计算机科学、人工智能、法律伦理等多个方面。这些技术手段和系统架构的综合运用,构成了当今反制无人机技术的核心内容。随着技术的不断进步,这一领域将继续展现出巨大的发展潜力和应用前景。
2026-01-12 23:06:37 7KB 软件开发 源码
1
《COMSOL超表面模拟技术:结构变化透射谱与偏振变换研究——用MATLAB实现Qbic多级子分解及模式电场磁场图解》,comsol 超表面复现Qbic,包含内容:结构变化透射谱,偏振变化透射谱,法诺曲线拟合用matlab代码直接出Q值,bic位置Q因子计算,多级子分解,电场磁场模式图带矢量箭头,所见即所得,内有视屏指导,可分步骤。 编号1 ,comsol;超表面复现;Qbic;结构变化透射谱;偏振变化透射谱;法诺曲线拟合;Q值计算;BIC位置Q因子;多级子分解;电场磁场模式图;视频指导;分步骤操作,"Comsol超表面复现Qbic:结构透射谱与偏振变化分析"
2026-01-12 19:00:37 726KB 柔性数组
1
题目:脉搏测试仪的设计 要求: 1.设计一个脉搏计,要求实现在 15s 内测量 1min 的脉搏数,并且 显示其数字; 2.用传感器将脉搏的跳动转换为电压信号,传感器输出电压一般 为几十毫伏; 3.正常人脉搏数为 60—80 次/min,婴儿为 90 一 100 次/min, 老人为 100—l 50 次/min。 4.自行设计所需的直流电源。 脉搏测试仪的设计属于数字电子技术领域,它要求设计者具备电路设计、信号处理和数字显示等相关知识。根据给定的文件信息,设计脉搏测试仪时需要考虑以下几点: 脉搏测试仪的核心功能是在15秒内测量一分钟的脉搏次数,并以数字形式显示结果。这一过程涉及到对时间的精确控制以及对脉搏信号的有效采样。设计者需要了解如何使用定时器或计数器来实现这一功能,并且确保在短时间内采集到足够的数据点来准确计算一分钟的脉搏次数。 脉搏信号的采集是通过传感器将脉搏的机械跳动转换成电压信号完成的。通常情况下,传感器输出的电压信号非常微弱,仅几十毫伏,因此设计者需要设计一个放大电路来增强这个信号,以便于后续处理。在放大过程中,设计者需要注意信号的噪声抑制,确保信号的清晰度,以免影响测量结果的准确性。 再者,对于正常成人、婴儿和老人的脉搏频率,设计者需要在设计中考虑到不同人群的脉搏频率范围,确保测试仪能够覆盖这些正常的生理变化。这意味着脉搏测试仪的设计需要具有一定的灵活性,能够适应不同脉搏频率的测量需求。 设计脉搏测试仪还要求自行设计所需的直流电源。这涉及到电源电路的设计,包括稳压、滤波等环节,以确保测试仪能够稳定地工作,避免电源波动对测量结果造成影响。 整个设计过程中,设计者需要综合运用数字电子技术的相关知识,包括数字电路设计、模拟电路设计、传感器应用、信号处理技术和电源设计技术。此外,还应该考虑到用户界面的设计,使得测试仪的操作简单直观,易于普通用户理解和使用。 在制作文档时,设计者应该详细记录设计方案的每一个环节,包括设计思路、电路图、元件清单、测试结果等,以便于后续的制作、测试和改进。 在进行脉搏测试仪设计时,还可以参考现有的相关技术和产品,了解它们的设计原理和实现方式,从而为自己的设计提供参考和借鉴。同时,还需要关注医学方面的知识,确保测试仪的测量结果准确反映人体脉搏的真实情况,避免医疗误差。 脉搏测试仪的设计是一个综合了电子技术、信号处理和用户体验的项目,设计者需要在遵循技术规范的同时,兼顾到产品的实用性和用户的便利性。通过科学严谨的设计过程,可以制造出既准确又易于操作的脉搏测试仪器。
2026-01-12 15:50:43 903KB 数字电子技术
1
英飞凌芯片汽车电子网络安全HSM技术资料分享与项目开发:涵盖RSA、AES等算法及安全服务支持,技术文档分享,汽车电子网络安全(英飞凌芯片)HSM技术资料分享与项目实践:RSA、AES算法及签名验证等安全功能详解,汽车电子网络安全(信息安全)HSM技术资料分享及项目开发。 芯片型号:英飞凌 支持算法:RSA,AES,签名生成及验证,CMAC生成及验证等 支持功能:安全服务,SecureBoot,HsmBootloader 技术文档:常用加密算法介绍ppt;标准SHE介绍ppt;HSM刷写ppt ,汽车电子网络安全; HSM技术; 英飞凌芯片型号; RSA; AES; 签名生成及验证; CMAC生成及验证; 安全服务; SecureBoot; HsmBootloader; 技术文档; 常用加密算法介绍ppt; 标准SHE介绍ppt; HSM刷写ppt。,英飞凌HSM技术:汽车电子网络安全与项目开发全解析
2026-01-12 12:29:56 3.54MB xhtml
1
内容概要:本文档详细介绍了Aumovio公司推出的第六代长距离毫米波雷达ARS620的技术规格、安装要求、电气参数及通信协议。ARS620是一款支持76-77GHz频段的雷达传感器,具备物体检测(OD)和雷达检测图像(RDI)功能,适用于自动驾驶辅助系统。其主要性能包括最大探测距离达280米,水平视场角±60°,垂直视场角±20°,并支持自动校准与遮挡检测。文档还列出了电源管理、CAN通信接口配置、所需车辆输入信号以及雷达输出的目标分类与运动状态信息。 适用人群:从事汽车电子系统开发、ADAS(高级驾驶辅助系统)集成、车载传感器应用的工程师和技术人员,尤其是涉及雷达选型、整车集成与调试的专业人员。 使用场景及目标:用于智能网联汽车中前向雷达系统的开发与部署,支持ACC自适应巡航、AEB紧急制动、FCW前方碰撞预警等功能的设计与验证;帮助开发团队完成雷达的硬件连接、信号匹配、标定调试及故障诊断。 其他说明:文档强调了安装时二次表面材料的选择标准与间距要求(建议≥10mm),并提供了详细的CAN报文结构与周期性/事件触发机制,便于系统集成。同时指出若输入信号无法满足条件,需通过邮件联系技术支持。
2026-01-11 23:37:38 1.1MB 毫米波雷达
1
本文深入探讨了AC/DC与DC/AC背靠背系统的原理和应用,特别是在电力质量调节、并网、充放电控制以及双向能量传输等场景中的重要性。文章详细介绍了AC/DC和DC/AC转换器的工作原理,背靠背系统的定义及其在电动汽车充电设施、可再生能源并网和工业电机驱动系统中的应用。此外,还分析了整流与斩波原理、PWM技术在逆变器中的应用以及控制器在电力电子转换中的作用。通过使用Simulink模型模拟和分析系统性能,本文为电力电子技术的研究和应用提供了有价值的参考。 AC/DC转换器是电力电子系统中的一种设备,它负责将交流电(AC)转换为直流电(DC)。这种转换器常用于各种电子设备的电源适配器中,也广泛应用于电力系统中的直流输电。而DC/AC逆变器则将直流电转换为交流电,它在太阳能光伏系统、不间断电源(UPS)以及电动汽车等领域中扮演着重要角色。背靠背系统是一种特殊的电力电子装置,它由AC/DC和DC/AC两部分构成,可以实现能量的双向流动,广泛应用于电力质量调节、并网和双向能量传输等场景。 文章首先深入剖析了AC/DC与DC/AC转换器的基本工作原理。AC/DC转换器通常包含整流环节,该环节可以是半波整流或全波整流,目的是改变交流电的极性并进行电压转换。DC/AC逆变器则需要逆变环节,通常涉及调制技术,比如脉宽调制(PWM)技术,以控制输出交流电的频率和幅值。 接着文章详细分析了背靠背系统的定义,以及其在不同领域中的应用。在电动汽车充电设施中,背靠背系统能够有效管理电网与电动车之间的能量传输,为快速充电提供了技术支撑。在可再生能源并网应用中,背靠背系统通过转换电力的频率,实现了风能、太阳能等新能源与传统电网的兼容。而在工业电机驱动系统中,背靠背系统则为电机提供了灵活的运行速度控制,同时提高了能量的使用效率。 文章进一步探讨了PWM技术在逆变器中的应用,以及控制器在电力电子转换中的作用。PWM技术通过调整开关器件的开关时间,控制逆变器输出电压波形的脉冲宽度,从而实现高质量的交流电输出。控制器在系统中的作用是调节和控制整个电力电子设备的运行,保证转换过程的稳定性和效率。 为了验证理论分析,文章使用Simulink模型对系统性能进行模拟和分析,展示了背靠背系统在实际应用中的表现。这为电力电子技术的研究者提供了实验和验证的参考。 在电力质量调节方面,背靠背系统能够迅速响应电网波动,稳定电压和频率,确保供电的连续性和稳定性。在并网技术方面,背靠背系统可以实现新能源电力与电网的无琏链接,提高电力系统的灵活性和效率。在充放电控制方面,背靠背系统可以优化电池的充放电过程,延长电池寿命,同时确保能量的高效利用。在双向能量传输方面,背靠背系统允许电力在两个方向流动,增加了电网的调节能力,尤其在分布式发电系统中具有重要意义。 电力电子技术是现代电力系统中不可或缺的一部分,AC/DC与DC/AC背靠背系统作为其中的关键技术之一,不仅在技术理论上具有重要的研究价值,而且在实际应用中展现出了巨大的潜力和应用前景。通过深入分析背靠背系统的工作原理和应用案例,本文为电力电子技术的研究和应用提供了深入的见解和实用的参考。
2026-01-11 19:04:37 14KB 电力电子技术
1
适合初学者,个人感觉不错,里面介绍了软件的一般加密解密方法,还有加脱壳技术
2026-01-11 15:35:58 1.33MB
1
CC2530 是用于2.4-GHz IEEE 802.15.4、ZigBee 和RF4CE 应用的一个真正的片上系统(SoC)解决方案。它能够以非常低的总的材料成本建立强大的网络节点。CC2530 结合了领先的RF 收发器的优良性能,业界标准的增强型8051 CPU,系统内可编程闪存,8-KB RAM 和许多其他强大的功能。CC2530 有四种不同的闪存版本:CC2530F32/64/128/256,分别具有32/64/128/256KB 的闪存。CC2530 具有不同的运行模式,使得它尤其适应超低功耗要求的系统。运行模式之间的转换时间短进一步确保了低能源消耗。 ### CC2530中文用户手册相关知识点 #### 一、概述 CC2530是德州仪器(TI)推出的一款适用于2.4 GHz IEEE 802.15.4、ZigBee和RF4CE应用的片上系统(SoC)。该芯片旨在以较低的成本构建高效的网络节点,并具备以下特性: - **高性能RF收发器**:支持2.4 GHz频段,提供优秀的无线通信能力。 - **增强型8051 CPU**:为系统提供了强大的计算能力。 - **系统内可编程闪存**:可根据不同需求选择32/64/128/256 KB的不同版本。 - **8 KB RAM**:提供充足的运行内存支持。 - **多种强大功能**:包括但不限于多种运行模式、低功耗特性等。 #### 二、CC2530的架构与组成 - **CPU与内存**: - **CPU**:采用增强型8051内核,提供良好的兼容性和计算性能。 - **闪存**:提供32/64/128/256 KB不同容量的版本。 - **RAM**:内置8 KB RAM,用于数据缓存和临时存储。 - **时钟与电源管理**: - 支持多种电源管理模式,如主动模式、空闲模式等,以实现超低功耗。 - 内置电源管理单元,可根据系统状态自动调节供电策略。 - **外设**: - 提供丰富的外设接口,包括通用I/O端口、定时器、USART等。 - 集成了ADC、DMA等高级组件,增强了芯片的功能性和灵活性。 - **无线电**: - 支持2.4 GHz频段的IEEE 802.15.4、ZigBee协议,适用于无线传感网络和智能家居等领域。 - 内置高性能RF收发器,确保稳定的无线通信质量。 #### 三、8051 CPU - **8051 CPU简介**: - 基于经典8051架构,具备较高的指令执行效率。 - 支持多种中断模式,提高系统的实时响应能力。 - **存储器**: - 包括内部RAM、外部RAM、程序存储器等多种类型。 - 支持复杂的存储器映射机制,便于高效的数据管理。 - **指令集**: - 拥有丰富的指令集,支持各种基本运算和控制指令。 - 支持中断服务程序,可灵活应对外部事件。 - **中断**: - 支持多级中断优先级设置,实现高效的任务调度。 - 提供中断屏蔽功能,便于在特定情况下关闭中断。 #### 四、调试接口 - **调试模式**:支持JTAG调试模式,便于开发过程中的错误检测和代码优化。 - **调试传输**:通过JTAG接口进行调试信息的传输。 - **调试命令**:提供一系列调试命令,方便进行内存读写、寄存器访问等操作。 - **锁位**:用于保护某些关键区域不被非法访问,确保系统安全。 #### 五、电源管理和时钟 - **电源管理**:支持多种电源管理模式,包括主动模式、空闲模式等,实现低功耗设计。 - **时钟**:内置多个振荡器,如主振荡器、32 kHz振荡器等,提供稳定的时间基准。 - **定时器标记产生**:支持定时器标记产生,可用于精确的时间控制。 #### 六、闪存控制器 - **闪存存储器组织**:支持页擦除、块擦除等多种擦除方式,便于高效管理存储空间。 - **闪存写**:提供详细的写入步骤,确保数据的安全性和完整性。 - **闪存页面擦除**:支持按页进行擦除操作,提高擦除效率。 #### 七、I/O端口 - **通用I/O**:提供丰富的通用I/O端口,可用于连接外部设备。 - **外设I/O**:包括定时器、USART、ADC等多种外设接口,增强系统的扩展性。 #### 八、DMA控制器 - **DMA操作**:支持多种DMA传输模式,如单次传输、连续传输等。 - **DMA配置参数**:包括源地址、目标地址、传输数量等多个配置项,提供灵活的数据传输方案。 - **DMA中断**:支持中断机制,可在DMA传输完成时触发中断处理程序。 #### 九、定时器1(16位定时器) - **16位计数器**:提供16位计数器,可用于时间测量、频率测量等功能。 - **定时器1操作**:支持自由运行模式、模模式、正计数/倒计数模式等多种工作模式。 - **IR信号产生和线性化**:支持IR信号的产生和线性化处理,适用于遥控设备的开发。 CC2530是一款高度集成的SoC芯片,不仅具备强大的计算能力和无线通信能力,还拥有丰富的外设接口和支持低功耗设计的能力,非常适合应用于ZigBee和RF4CE相关的物联网场景中。
2026-01-11 12:40:17 8.98MB cc2530 zigbee 技术手册
1
数模转换器(DAC)是一种将数字信号转换为模拟信号的电子设备。数字信号由一系列的二进制数值组成,而模拟信号则是可以连续变化的信号。DAC的应用范围非常广泛,包括音视频设备、通信系统、测试测量设备等领域。 DAC的工作原理是通过数字输入控制一个或多个开关,每个开关对应数字输入的一位。这些开关的输出通常是两个固定的电平,比如地(0伏)和基准电压源(比如5伏)。每个开关的状态(开或关)将决定是否将这个电平加到输出总线上。这些开关输出的信号先经过一个加权网络,将每个数字位转化为对应的电流或电压值。加权网络通常使用不同的电阻值来实现不同位的加权。然后,这些加权后的电流或电压值相加得到总电流或总电压,再经过放大器放大,转换为模拟电压,从而得到最终的模拟信号。 DAC的重要属性包括分辨率、参考电压、转换精度、线性度、单调性和输出电压范围。 分辨率是DAC的一个核心属性,它决定了DAC能够处理的最小信号变化。分辨率用位数来表示,比如8位、10位、12位等,位数越多,可表示的模拟信号的细节越多。分辨率影响了DAC的转换精度和输出信号的动态范围。例如,一个10位的DAC可以表示的输出模拟信号范围是2的10次方,即1024种不同的输出电平。 参考电压是DAC的一个关键输入参数,它定义了DAC输出信号的最大和最小范围。如果参考电压是一个正值,则DAC输出的最大电压值就是参考电压值,最小值为0伏。如果参考电压是负值,则输出范围可能是从0伏到负参考电压值,或者负参考电压值到0伏。参考电压的稳定性和精确度直接影响到DAC输出信号的质量。 转换精度和线性度是衡量DAC性能的重要指标。转换精度指的是DAC实际输出与理想输出之间的差异。线性度则是指DAC在整个输入范围内输出信号的线性关系,理想情况下,输入信号和输出信号应该呈现出完美的线性关系,但实际上会有一定偏差,线性度就是这种偏差的量化表示。 单调性是指随着输入信号增加,输出信号也单调增加,没有反向或跳变。如果DAC不单调,则输出信号会出现错误,导致信号失真。 输出电压范围指明了DAC输出信号的最大和最小电压值。在设计时,需要根据应用的需求来选择合适的DAC,以确保输出信号能够在所需的动态范围内准确表示。 在DAC的设计中,运放的使用非常关键。运放可以用于实现加法器和放大器的功能,从而得到正确的输出信号。CMOS型运算放大器因其输入阻抗高,偏置电流小,适合用于高精度的DAC设计。运放的失调电压是指当运放的两个输入端电压相等时,输出端仍然会有微小的电压差异,这会影响到DAC的转换精度,尤其是在小信号范围内。 为了提高DAC的转换精度,通常采用金属膜电阻作为加权网络,因为它们的温度系数低,稳定性好。在实际应用中,还需要考虑运放的驱动能力,特别是当使用CMOS电路驱动DAC时,需要考虑驱动电路的导通电阻。导通电阻过大会影响DAC的精度和线性度。 DAC是数字信号处理和模拟信号生成的重要接口,它将数字世界与现实世界连接起来。选择合适的DAC需要根据应用需求、分辨率、参考电压范围、精度、线性度、成本等因素综合考虑。随着技术的发展,DAC的设计和性能也在不断提升,满足了更加复杂的应用需求。
2026-01-10 12:00:39 228KB 数模转换器 技术应用
1
电路的功能 如果用8位DAC进行双极性输出,无极性的电压就只有1/128的分辨率。若要提高分辨率,仍然使用8位DAC,只在输出增加反相电路,满量程电压分辨率即可为1/256。 电路工作原理 乘法型AD7523是基本的D-A转换器,基准电压VR可为正、也可为负,用一个+5V的基准电压二极管就可获得,如果稳定度要求不高,也可由电源供给。OP放大器A1用作电压转换,POL端子为“H”电平时,模拟开关S2闭合,S1打开,A2为放大倍数等于1的反相放大器,输出电压为+5V。反相增益精度取决于R2和R3的比率,本电路R2、R3的阻值相等。调零后,用VR1把A1输出调到4.98V,并验证即使极性改变,绝对也不会变。
1