This exploratory paper quests for a stochastic and context sensitive grammar of images. The grammar should achieve the following four objectives and thus serves as a unified framework of representation, learning, and recognition for a large number of object categories. (i) The grammar represents both the hierarchical decompositions from scenes, to objects, parts, primitives and pixels by terminal and non-terminal nodes and the contexts for spatial and functional relations by horizontal links between the nodes. It formulates each object category as the set of all possible valid configurations produced by the grammar. (ii) The grammar is embodied in a simple And–Or graph representation where each Or-node points to alternative sub-configurations and an And-node is decomposed into a number of components. This representation supports recursive top-down/bottom-up procedures for image parsing under the Bayesian framework and make it convenient to scale up in complexity. Given an input image, the image parsing task constructs a most probable parse graph on-the-fly as the output interpretation and this parse graph is a subgraph of the And–Or graph after * Song-Chun Zhu is also affiliated with the Lotus Hill Research Institute, China. making choice on the Or-nodes. (iii) A probabilistic model is defined on this And–Or graph representation to account for the natural occurrence frequency of objects and parts as well as their relations. This model is learned from a relatively small training set per category and then sampled to synthesize a large number of configurations to cover novel object instances in the test set. This generalization capability is mostly missing in discriminative machine learning methods and can largely improve recognition performance in experiments. (iv) To fill the well-known semantic gap between symbols and raw signals, the grammar includes a series of visual dictionaries and organizes them through graph composition. At the bottom-level the dictionary is a set of image primitives each having a number of anchor points with open bonds to link with other primitives. These primitives can be combined to form larger and larger graph structures for parts and objects. The ambiguities in inferring local primitives shall be resolved through top-down computation using larger structures. Finally these primitives forms a primal sketch representation which will generate the input image with every pixels explained. The proposal grammar integrates three prominent representations in the literature: stochastic grammars for composition, Markov (or graphical) models for contexts, and sparse coding with primitives (wavelets). It also combines the structure-based and appearance based methods in the vision literature. Finally the paper presents three case studies to illustrate the proposed grammar.
2022-05-06 16:13:24 7.92MB image processing image grammar
1
编译原理语法分析实习,武汉大学计算机学院,课程报告。
2022-05-06 14:21:41 478KB grammar
1
solidity-antlr4:ANTLR4的固态语法
2022-03-23 11:37:08 8KB parser ethereum antlr-grammar solidity
1
语法检查器 该代码的目的是使用深度学习技术纠正简单的语法错误,更具体地说,是使用注意机制对序列模型进行延迟的序列。 数据集 由于没有用于语法校正的开源数据集,因此我决定使用一种简单的技术向包含不符合语法要求的句子的数据集添加语法插补。 这是我发现的最大的会话书面英语集,在语法上基本上是正确的,超过30万行。 给定这样的文本样本,下一步是生成在训练期间使用的输入输出对。 这是通过以下方式完成的: 从数据集中绘制示例句子。 随机应用某些扰动后,将输入序列设置为此句子。 将输出序列设置为不受干扰的句子。 其中在步骤(2)中应用的扰动旨在引入小的语法错误,我们希望模型学习纠正。 到目前为止,这些干扰仅限于: 减去文章(a,an,the) 用其对应的同一个替换一些普通的同音字(例如,用“ there”替换“ their”,用“ than”替换“ then”) 在此项目中,每种干扰都会
2021-11-30 10:37:56 19.06MB Python
1
pr 用Rust编写的快速,资源少的自然语言处理和错误纠正库。 nlprule使用资源为NLP实现了基于规则和查找的方法。 from nlprule import Tokenizer , Rules tokenizer = Tokenizer . load ( "en" ) rules = Rules . load ( "en" , tokenizer ) rules . correct ( "He wants that you send him an email." ) # returns: 'He wants you to send him an email.' rules . correct ( "I can due his homework." ) # returns: 'I can do his homework.' for s in rules . suggest ( "S
1
Unit2__Section__A(Grammar__Focus-4c)精品课件.ppt
2021-11-20 13:05:58 2.08MB
LR解析器(LR(0),SLR(1),CLR(1)和LALR(1)) 是一种自底向上的解析器,用于阅读语法。 LR解析器有不同种类,其中一些是:SLR解析器,LALR解析器,Canonical LR(1)解析器。 我使用Java和GUI来实现这些解析器,以便于使用。 这很简单:首先输入无上下文语法,然后选择解析器(LR(0),SLR(1),CLR(1)和LALR(1))。 然后,您可以通过单击相应的按钮来查看已解析语法的所有属性(增强语法,第一组,跟随组,规范集合,转到表,动作表)。 另外,您可以输入不同的内容,并检查语法是否接受字符串。 这是应用程序的屏幕截图:
2021-11-17 09:49:05 85KB parser compiler lr-parser grammar
1
2020版高中英语 Unit 2 The Olympic Games Section Ⅳ Grammar课时跟踪训练 2.doc
2021-10-20 09:03:01 115KB
a grammar system for shape construction
2021-10-18 20:20:23 1.99MB shape
1
语言:English (United States) 为您发送,共享,推文或发布的所有内容的最佳写入样式和语法检查器。 prowritingaid在Chrome Store中被评为4.8 / 5。没有其他写作助理或语法检查员如此高度评级。为什么prowritingaid特别?---------------------------有时你想要快速修复你的写作,但有时你需要更多。我们提供两者:语法检查,因为您编写错误,并深入报告,帮助您加强和波兰最重要的工作。您的技术和信心将通过我们的独特建议,文章,视频和测验组合来增长,使技能开发乐趣和互动。我们的价格是合理的,因为我们的用户爱我们并推荐我们。这意味着我们不需要在广告上度过我们所有的钱。你将成为一个更好的作家,他们的潜在Craft.io品。PROWRITINGAID提供什么?-------------------------------PROWRITINGAID超越语法检查,将您的良好写作变为伟大的写作。它可以: - 语法检查,拼写检查和风格改进; - 检查拼写,连字符和资本化的一致性; - 消除陈词滥调和冗余; - 检查术语问题; -
2021-09-14 13:28:28 3.38MB 扩展程序
1