这是论文“PCA based Edge-preserving Features for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12), 7140-7151.”的代码,更多细节可以在论文中找到。 如果你使用这个演示,请引用这篇论文。 要运行此演示,您应该先下载 libsvm-3.22。 libsvm-3.22 可在https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 获得
2022-11-19 19:43:23 5.73MB matlab
1
用matlab软件提取音频中的特征量,包括MFCC,短时能量等
1
特征提取
2022-10-31 21:06:07 7KB python
1
Good features to track. CVPR1994, pages 593–600
2022-10-17 17:07:23 320KB
1
svm算法手写matlab代码使用HOG功能和SVM的手写数字识别 在这个知识库中,我将提供一个MatLab和一个Python,用于使用HOG功能和SVM进行手写数字识别。 MatLab和Python代码的结构相同,分为三(3)个部分: 步骤1:资料准备步骤2:HOG功能计算步骤3:设置并运行SVM 步骤1:资料准备 在代码的第一部分,加载了MNIST数据集[1]。 数据集与标签一起分为训练集和测试。 训练和测试集中的总位数分别为60000和10000。 标签是十(10)位数字(0到9)。 在MatLab中,每个数字由784个元素的向量表示。 784个元素的向量将在代码中稍后调整大小,以形成28x28像素的图像。 在Python中,由于每个数字均由28x28像素的图像表示,因此跳过了调整大小步骤。 步骤2:HOG功能计算 从每个28x28像素图像中计算出定向梯度直方图(HOG)特征向量[2]。 每个向量由324个元素组成。 整个324个元素的特征向量将在以后用于训练支持向量机(SVM)。 步骤3:设置并运行SVM 支持向量机(SVM)[3]是我在本示例中使用的多类分类器,用于对手写数字
2022-09-25 12:17:59 29.09MB 系统开源
1
Good Features to Track LVI-SAM中视觉里程计的角点特征提取方法
2022-09-05 09:07:35 871KB VSLAM
1
IOS应用源码之【类库与框架】SharpKit-drop-in share features for all iOS apps
2022-07-12 18:08:16 985KB
【类库与框架】-SharpKit-drop-in share features for all iOS apps.7z
2022-07-07 20:05:59 1.05MB iOS-Sourcecode