基于Matlab的 变转速时域信号转速提取及阶次分析 将采集的脉冲信号转为转速,并对变转速时域信号进行角域重采样, 包络谱分析后得到阶次结果 以渥太华轴承数据集为分析对象进行展示 程序已调通,可直接运行 ,基于Matlab的转速提取;变转速时域信号;角域重采样;包络谱分析;阶次结果;渥太华轴承数据集;程序调通。,Matlab程序:变转速信号转速提取与阶次分析研究报告 在现代工业监测和故障诊断领域,转速的精确测量和时域信号的阶次分析对于设备状态的评估至关重要。本研究聚焦于利用Matlab软件平台,开发了一套能够从变转速时域信号中提取转速信息,并通过角域重采样和包络谱分析手段,获得信号的阶次结果的方法。具体而言,该研究以渥太华轴承数据集作为分析实例,通过一系列算法处理流程,实现了对信号的有效解析。 研究的首要步骤是将采集到的脉冲信号转换成转速值。这一过程涉及到信号的预处理、去噪以及峰值检测等技术,以便准确捕捉到信号中的转速变化特征。由于信号是在变转速条件下采集的,因此需要对时域信号进行角域重采样,这是为了消除因转速不均匀而导致的信号失真,保证后续分析的准确性。 角域重采样后,研究引入了包络谱分析技术。该技术能够有效地提取信号中的周期性成分,通过分解得到各个阶次的振动信息。对于旋转机械而言,不同阶次的振动特征往往与特定的机械状态相关联,例如轴承的磨损、不平衡等。因此,通过包络谱分析获取的阶次结果对于识别故障和维护机械设备具有重要的参考价值。 渥太华轴承数据集是本研究方法验证的对象。该数据集包含了一系列在不同工作状态下的轴承振动信号,是一个广泛认可的测试平台,常用于机械故障诊断技术的测试与评估。研究通过将Matlab编写的程序应用于该数据集,展示了变转速信号转速提取及阶次分析的有效性和实用性。 程序的开发和调试工作已经完成,意味着用户可以直接运行该程序进行相关分析。这对于那些不具备深厚编程背景的工程师和研究人员而言,大大降低了技术门槛,使得复杂的数据分析工作变得更加简便易行。 在更广泛的应用背景下,该研究的成果不仅限于轴承监测,还可以拓展到其他旋转设备的健康监测和故障诊断中。例如,对于风力发电机、汽车发动机等设备,通过精确的转速提取和阶次分析,可以有效预测设备潜在的故障,从而进行及时的维护和修理,保障设备的稳定运行。 本研究基于Matlab开发的变转速时域信号转速提取及阶次分析方法,为旋转机械的状态监测和故障诊断提供了一种高效、便捷的技术手段。通过渥太华轴承数据集的实例验证,展现了该方法在实际应用中的可行性和可靠性。这不仅有助于提升机械设备的运维效率,还为相关领域研究者和工程师提供了有力的技术支持。
2026-01-10 11:15:31 629KB istio
1
基于Matlab仿真的运动补偿算法:含两种包络对齐及相位补偿方法的平动目标一维距离像处理研究,运动补偿算法的MATLAB仿真研究:基于包络对齐与相位补偿方法的雷达信号处理技术,雷达信号处理中的 运动补偿算法 包括相邻相关法和积累互相关法两种包络对齐方法,多普勒中心跟踪法和特显点法两种相位补偿方法 matlab仿真代码 程序说明:对存在平动运动的目标一维距离像进行运动补偿,程序包括相邻相关法和积累互相关法两种包络对齐方法,多普勒中心跟踪法和特显点法两种相位补偿方法,提供散射点回波数据和雅克42飞机实测数据用于运动补偿测试,代码清晰效果良好 ,核心关键词:雷达信号处理;运动补偿算法;包络对齐方法;相位补偿方法;Matlab仿真代码;散射点回波数据;雅克42飞机实测数据。 关键词以分号分隔结果为:雷达信号处理; 运动补偿算法; 包络对齐法; 相位补偿法; Matlab仿真代码; 散射点回波数据; 雅克42飞机实测数据。,MATLAB仿真:雷达信号处理中的运动补偿算法实践
2026-01-09 16:00:01 2.45MB 正则表达式
1
在信号处理领域,SNR(信噪比)、SNDR(信号到噪声加失真比)、THD(总谐波失真)、ENOB(有效位数)和SFDR(无杂散动态范围)是评估数字信号处理器件性能的关键指标。本文将对这些概念进行详细阐述,并介绍基于MATLAB实现这些参数计算的基本思路。 SNR(Signal-to-Noise Ratio)是衡量信号质量的重要参数,表示信号功率与噪声功率的比值。在MATLAB中,可以通过计算信号和噪声的均方根(RMS)值来估算SNR。具体步骤为:先计算信号的RMS值,再计算噪声的RMS值,最后将信号RMS值除以噪声RMS值,得到以分贝(dB)表示的SNR。 SNDR(Signal-to-Noise plus Distortion Ratio)不仅考虑了噪声,还考虑了信号中的失真成分,能够更全面地评估系统性能,尤其在处理非线性系统时更为有效。在MATLAB中,通常通过傅里叶变换分析信号频谱,分离信号和失真成分,进而计算SNDR。 THD(Total Harmonic Distortion)用于衡量信号的失真程度,尤其是谐波失真。它是所有谐波分量(除基波外)功率之和与基波功率的比率。在MATLAB中,可以通过计算原始信号和失真后信号的傅里叶系数,提取各次谐波的功率,从而计算THD。 ENOB(Effective Number of Bits)是衡量ADC(模拟到数字转换器)性能的重要指标,表示转换结果等效于多少位的无噪声数字信号。ENOB的计算通常基于量化噪声分析,可通过SNR和ADC的满量程信号幅度来确定。在MATLAB中,可以将SNR公式转换为ENOB进行计算。 SFDR(Spurious-Free Dynamic Range)定义为最大无杂散信号与噪声底之间的功率差,用于衡量系统在没有额外杂散信号干扰时的动态范围。在MATLAB中,SFDR的计算通常通过FFT(快速傅里叶
2026-01-09 09:14:35 56KB MATLAB 信号处理
1
本文详细介绍了如何对AWR1843和DCA1000采集的数据进行解析。首先,通过两张关键图示解释了数据采集的基本原理,包括每个发射天线(tx)的chirp信号如何被接收天线(rx)接收,以及DCA1000的数据存储方式。接着,文章提供了一个MATLAB脚本,用于解析二进制文件,并生成一个维度为[Rxnum, numChirps*numADCSamples]的数据表格。脚本的具体功能包括读取二进制文件、处理实部和虚部数据、以及按接收天线组织数据。最后,文章通过一个实际案例验证了脚本的正确性,展示了如何将采集到的数据解析为可用于后续处理的格式。 在当今的信号处理与雷达技术领域,AWR1843数据的解析尤为重要。AWR1843是由德州仪器(Texas Instruments,简称TI)推出的一款高性能毫米波雷达传感器,它具备先进的雷达数据采集能力。为了从AWR1843和DCA1000采集系统中提取有用信息,我们需要掌握专业的数据解析方法。 数据采集基本原理的解释至关重要。在雷达系统中,每个发射天线发出的一系列chirp信号,由接收天线接收。Chirp信号是一种频率随时间线性变化的脉冲信号,非常适合用于测量目标的距离和速度。AWR1843传感器通过发射和接收这样的信号,可以进行复杂的雷达测量。DCA1000数据采集器负责捕获来自AWR1843传感器的模拟数据,并将其转换为数字信号存储在内部。 数据解析的第一步是理解DCA1000的数据存储方式。传感器收集的数据被存储为二进制格式,因此需要一种有效的工具或脚本将其转换为可读和可处理的形式。MATLAB作为一种强大的数值计算和可视化软件,在数据处理方面表现出色,尤其适用于矩阵运算和信号分析。本文提供的MATLAB脚本就承担了这一重要角色。 该脚本的工作流程包括:读取二进制文件、处理实部和虚部数据以及按接收天线组织数据。处理实部和虚部数据是因为雷达信号通常由这两个部分组成,分别代表信号的幅度和相位信息。对这两个部分进行处理可以更深入地分析目标特性。最终生成的数据表格维度为[Rxnum, numChirps*numADCSamples],这意味着数据被组织成接收天线数量(Rxnum)和每个chirp信号的ADC(模拟到数字转换器)采样数(numChirps*numADCSamples)的二维数组,这种格式为后续的数据分析和处理提供了便利。 文章通过一个实际案例验证了脚本的正确性。这个案例演示了如何将采集到的数据解析成可用于进一步分析的格式。案例中的数据可能来源于具体的雷达测量实验,展示了脚本在真实应用场景中的有效性和可靠性。通过这样的实际应用,我们可以清晰地看到数据解析后的结果如何帮助我们进行目标检测、距离测量、速度测定等后续雷达信号处理工作。 雷达技术、尤其是毫米波雷达在现代汽车安全、工业检测以及科研中扮演着关键角色。TI的毫米波雷达传感器因其高精度和高性能而广泛应用于这些领域。掌握AWR1843数据解析方法不仅能够帮助工程师和技术人员更好地从这些传感器中提取信息,也能为最终产品和服务的创新提供强有力的支撑。 此外,对于雷达技术的学习者和研究者而言,深入理解AWR1843的数据解析不仅是基本功,也是进行复杂信号处理和系统优化的基础。通过本文的介绍,读者应该能够对AWR1843数据的采集和解析有一个清晰的认识,并能够在实际工作中应用这些知识。
2026-01-07 20:25:40 14KB 雷达技术 信号处理 TI毫米波雷达
1
基于GNURadio实现的QPSK信号调制.grc工程,可以用于通信原理实验教学展示QPSK信号调制链路中信号波形和频谱的变化等。
2026-01-07 15:50:40 16KB GNURadio
1
本书系统阐述了用于皮层脑电图(ECoG)信号记录的集成电路接口设计原理与关键技术。内容涵盖生理信号特性、前端电路架构、低功耗设计方法及噪声抑制策略。重点介绍了亚阈值工作、gm/ID设计法、斩波稳定、伪电阻实现与共模干扰抑制等核心技术,结合现代CMOS工艺,为高密度神经接口提供低噪声、低功耗解决方案。适用于生物医学工程、集成电路设计及神经科技领域的研究人员与工程师。 ECoG信号记录集成电路是皮层脑电图(ECoG)信号记录中所使用集成电路接口的设计原理和关键技术。这些集成电路技术的应用领域广泛,包括生物医学工程、集成电路设计和神经科技等。 生理信号特性是ECoG信号记录集成电路设计的基础。这些生理信号包括各种生物电势,如脑电信号等。这些信号的特性包括频率、幅度等,这些特性的理解和掌握对于集成电路的设计至关重要。 前端电路架构是ECoG信号记录集成电路的核心组成部分。它包括多种电路,如差分放大器、模拟滤波器等。这些电路的设计和选择直接影响到整个集成电路的性能,包括信号的放大、滤波等功能。 低功耗设计方法是ECoG信号记录集成电路设计的一个重要方面。低功耗设计可以通过多种方式实现,如使用亚阈值工作等。这些设计方法不仅可以提高集成电路的性能,还可以延长其使用寿命。 噪声抑制策略是ECoG信号记录集成电路设计中的一个关键环节。噪声在信号的传输过程中会产生干扰,影响信号的质量。噪声抑制策略可以通过多种技术实现,如斩波稳定、伪电阻实现等。 亚阈值工作是ECoG信号记录集成电路设计的一种重要方法。通过亚阈值工作,可以在低功耗的情况下实现电路的正常工作。这对于延长集成电路的使用寿命,提高其稳定性具有重要意义。 gm/ID设计法是ECoG信号记录集成电路设计中的一种重要设计技术。通过使用gm/ID设计法,可以在电路设计中实现更好的性能和更低的功耗。 斩波稳定是ECoG信号记录集成电路设计中的一种重要技术。通过斩波稳定,可以有效提高电路的稳定性和抗干扰能力。 伪电阻实现是ECoG信号记录集成电路设计中的一种重要技术。通过伪电阻实现,可以在电路中实现低频高通滤波,从而提高信号的质量。 共模干扰抑制是ECoG信号记录集成电路设计中的一种重要技术。通过共模干扰抑制,可以有效减少共模干扰对信号的影响,从而提高信号的质量。 现代CMOS工艺为ECoG信号记录集成电路的设计提供了强大的支持。通过使用现代CMOS工艺,可以实现电路的小型化和高性能化。 ECoG信号记录集成电路在生物医学工程、集成电路设计和神经科技等领域有着广泛的应用。通过深入理解和掌握其设计原理和技术,可以设计出性能更优、功耗更低、抗干扰能力更强的集成电路产品。这对于推动相关领域的技术进步和应用具有重要的意义。
2026-01-07 13:09:06 1.57MB 集成电路 生物医学 信号处理
1
基于扩张状态观测器的永磁同步电机(PMSM) 自抗扰控制ADRC仿真模型 MATLAB Simulink ①跟踪微分器TD:为系统输入安排过渡过程,得到光滑的输入信号以及输入信号的微分信号。 ②非线性状态误差反馈律NLSEF:把跟踪微分器产生的跟踪信号和微分信号与扩张状态观测器得到的系统的状态计通过非线性函数进行适当组合,作为被控对象的控制量 ③扩张状态观测器ESO:作用是得到系统状态变量的估计值及扩张状态的实时作用量。 在现代电气工程和自动化控制领域,永磁同步电机(PMSM)因其高效率、高精度和优良的动态性能而得到广泛应用。电机控制系统的设计与优化一直是电气工程研究的热点,其中包括自抗扰控制(Active Disturbance Rejection Control, ADRC)的研究。ADRC是一种新型的控制策略,它通过对系统内外扰动的在线估计与补偿,达到提高系统控制性能的目的。 自抗扰控制的关键在于扩张状态观测器(Extended State Observer, ESO),它能够估计系统状态变量以及系统内外扰动的实时作用量。ESO通过构造一个虚拟的扩张状态,将系统的不确定性和外部干扰归纳其中,使得系统控制设计仅需考虑这个虚拟状态的观测问题。而跟踪微分器(Tracking Differentiator, TD)的作用是为系统输入安排一个平滑的过渡过程,并能够得到光滑的输入信号及其微分信号。这样设计的好处是,在系统的控制输入和状态变化剧烈时,能够有效避免由于突变引起的控制性能下降。 非线性状态误差反馈律(Nonlinear State Error Feedback, NLSEF)则是将TD产生的跟踪信号和微分信号与ESO获得的系统状态估计通过非线性函数进行组合,形成被控对象的控制量。这个反馈机制是ADRC的核心,其设计的合理性直接关系到控制系统的性能。 MATLAB Simulink作为一款强大的仿真工具,为复杂系统的模型构建、仿真分析和控制设计提供了便利。通过在Simulink环境中搭建基于扩张状态观测器的永磁同步电机自抗扰控制模型,研究人员可以直观地观察和分析系统的响应特性,对控制策略进行优化调整,进而达到提高电机控制精度和稳定性的目的。 仿真模型的构建过程涉及多个环节,包括电机模型的建立、控制器的设计、扰动的模拟与补偿等。在具体实施中,首先需要对PMSM进行精确建模,包括电机的基本参数、电磁特性以及机械特性等。然后根据ADRC的原理,设计出相应的ESO和NLSEF算法,并通过Simulink中的各种模块进行搭建和仿真。仿真过程中,研究人员可以根据需要对模型参数进行调整,观察控制效果,以达到最佳的控制性能。 通过仿真模型,可以对永磁同步电机在不同的工作条件下的性能进行分析,包括起动、负载变化、速度控制等。此外,还可以模拟各种扰动因素,如负载突变、电网波动等,检验ADRC的抗扰动能力。这种仿真分析方法对于预测系统的实际表现、优化控制策略、降低研发成本等方面具有重要意义。 在现代电机控制领域,通过模型仿真进行控制策略的预研和验证已成为一种普遍的做法。基于扩张状态观测器的永磁同步电机自抗扰控制ADRC仿真模型的研究,不仅推动了电机控制理论的发展,也为实际应用提供了有效的技术支持。随着电气工程领域技术的不断进步,类似的研究还将继续深化,对提高电机控制系统的性能、拓展其应用范围具有重要的理论和实际价值。
2026-01-05 14:35:58 333KB
1
在进行DSP课程设计的过程中,设计一个正弦信号发生器是一个重要的环节。本篇文档详细描述了正弦信号发生器的设计方案、设计原理、总体方案设计、设计内容以及源程序等相关知识点。 设计的目的是使学生能够通过实验掌握DSP的软件开发过程,学会使用汇编语言进行程序设计,以及使用CCS仿真模拟DSP芯片,应用C54X汇编语言实现正弦信号发生装置。 设计原理方面,采用泰勒级数展开法产生正弦波,其优点在于所需存储单元少、稳定性好、算法简单易懂,并且级数越多,得到的正弦信号失真度越小。通过取泰勒级数的前五项来近似计算正弦值。 在总体方案设计方面,实验基于CCS开发环境,这是TI公司推出的一款为TMS320系列DSP软件开发的集成开发环境,提供从环境配置、源文件编译、编译连接、程序调试到跟踪分析等环节的服务。软硬件开发工具的集成使得软件的编写、汇编、软硬件仿真和调试等开发工作在统一的环境中进行,从而加快软件开发进程。 设计内容方面,包括设置DSP的仿真环境、编写汇编源程序、建立链接命令文件、创建工程文件、添加文件到工程中、生成和运行程序、观察运行结果等步骤。其中,编写汇编源程序是整个设计的核心,要实现正弦信号发生器,需要编写相应的汇编代码并确保其逻辑正确。 源程序部分包括汇编源程序sin、寄存器定义、数据定义、程序初始化等。文档中给出了部分汇编代码,包括对栈的操作、变量的初始化、循环条件的设定等。通过这些代码,DSP处理器可以计算出与x轴角度值对应的正弦波形点的y值,从而生成连续的正弦波信号。 通过上述过程,学生可以学习和掌握DSP在信号处理方面的应用,特别是对正弦波生成原理的理解和汇编语言编程能力的提升有着显著效果。文档内容详细、步骤清晰,是进行DSP课程设计时不可或缺的参考资料。
2026-01-04 00:58:34 531KB
1
简要地介绍了卫星通信中宽带信号空间分集合成技术的信号处理方法。对合成方法、时域均衡等方面进行了分析研究。在现有的自适应判决反馈均衡器(DFE)的基础上,提出了一种改进的均衡结构,使其适用于高速数据的接收。提出了一种LMS算法来实现最大信噪比合成。此方法无需信噪比估计,可自适应地更新信号合成系数。仿真结果表明,通过该合成方法获得的合成效果与理论值相比存在0.3 dB以下的损失,但系统仍能在-3 dB信噪比的条件下正常工作。该合成方法可应用于高数据速率卫星通信中。
2026-01-03 22:58:06 337KB 无线网络
1
本文详细介绍了车载毫米波DDMA-MIMO雷达的仿真方案,重点分析了基于Empty-band算法的发射天线通道解调和相位法速度解模糊方案的验证及可行性。文章首先阐述了DDMA-MIMO在车载毫米波FMCW 4D雷达中的重要性,包括其通过动态多普勒域资源分配提升系统性能的能力。随后,详细讨论了系统设计、波形设计、发射天线通道解调、速度解模糊等关键技术,并提供了相应的代码实现和参数设置。最后,总结了鲁棒CA-CFAR算法、DDMA发射天线通道解调算法和相位补偿法速度解模糊算法的优势,以及其在嵌入式平台上的可移植性。 车载毫米波DDMA-MIMO雷达仿真技术是一项结合了动态多普勒域资源分配(DDMA)和多输入多输出(MIMO)技术的雷达系统仿真。DDMA技术在雷达信号处理中扮演着关键角色,能够通过动态分配多普勒域资源来提升整个雷达系统的性能。而MIMO技术通过使用多个发射和接收天线来提高雷达的空间分辨率和数据获取效率。在车载毫米波FMCW(频率调制连续波)4D雷达系统中,这两种技术的结合能够实现更高级别的环境感知能力。 仿真方案中,Empty-band算法被用来实现发射天线通道的解调。该算法的核心在于它能够优化带宽的使用,通过识别和利用频谱中的“空带”来传输数据,从而在不增加额外发射功率的前提下提高系统的检测能力和抗干扰性能。此外,该仿真方案还对速度解模糊算法进行了验证,即使用相位法来解决速度估计中的模糊性问题。这种算法通过分析雷达接收到的信号的相位信息,来精确计算出目标物体的速度,避免了因雷达波的周期性而导致的速度模糊现象。 文章中详细介绍了系统设计的关键部分,包括波形设计、发射天线通道解调和速度解模糊等。系统设计需要确保各个组成部分能够高效协同工作,波形设计则是确保雷达能够有效探测目标并获取必要的信息。通过具体的代码实现和参数设置,作者展示了如何将这些复杂的理论和算法应用到实际的仿真环境中,进而验证了DDMA-MIMO雷达在提高性能方面的潜力。 除了技术细节,文章还总结了多种算法的优势,特别是鲁棒CA-CFAR(恒虚警率)算法和相位补偿法。CA-CFAR算法能够自动调整阈值来适应复杂的环境变化,从而保持对目标的准确检测;而相位补偿法则通过补偿信号的相位差来提高速度解模糊的准确性。这些算法的组合不仅提升了雷达的探测能力,而且增加了系统的鲁棒性。 文章探讨了这些算法和技术在嵌入式平台上的可移植性。嵌入式系统由于其轻量级和低功耗的特点,非常适合车载应用。将DDMA-MIMO雷达仿真技术移植到嵌入式平台,能够使得未来车辆更加智能化,提高自动驾驶系统的安全性和可靠性。 车载毫米波DDMA-MIMO雷达仿真技术通过利用先进的信号处理算法和系统设计,为改善车载雷达性能提供了新的思路和方法。这些技术的整合不仅提升了雷达的探测能力,还确保了其在实际应用中的高效性和可靠性,为未来自动驾驶车辆的安全行驶提供了坚实的技术基础。
1