基于PSCAD软件,对变压器的物理模型进行建模,供大家学习
1
解决问题: TypeError: TextEncodeInput must be Union[TextInputSequence,Tupele[InputSequence, InputSequence]] 使用方法: pip install transformers_old_tokenizer-3.1.0-py3-none-any.whl from transformers_old_tokenizer import AutoTokenizer
2022-09-05 17:05:49 209KB transformers
1
可用于语义聚合任务中的文本编码器,它将句子和段落映射到 768 维密集向量空间,是 sentence_transformers 库的模型之一,官网下载速度缓慢,容易被墙,下载解压后,可以参考此文章进行模型本地加载 https://blog.csdn.net/weixin_43721000/article/details/125507996
1
这是一个句子转换器模型,它将句子和段落映射到 384 维密集向量空间,可用于聚类或语义搜索等任务,是 sentence_transformers 库的模型之一,官网下载速度缓慢,容易被墙,下载解压后,可以参考此文章进行模型本地加载 https://blog.csdn.net/weixin_43721000/article/details/125507996
1
基于transformers+bert预训练模型在语义相似度任务上的finetune
2022-06-21 01:23:44 429.65MB bert 语义相似度 transformers
1
NLP领域取得最重大突破!谷歌AI团队新发布的BERT模型,在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩。毋庸置疑,BERT模型开启了NLP的新时代!
2022-05-26 23:37:46 717KB BERT
1
图书简介 该书将带您学习使用Python的NLP,并研究了由Google,Facebook,Microsoft,OpenAI和Hugging Face等先驱者创建的变压器体系结构中的各种杰出模型和数据集。 这本书分三个阶段训练您。在向RoBERTa,BERT和DistilBERT模型过渡之前,第一阶段向您介绍从原始变压器开始的变压器体系结构。您会发现一些小型变压器的培训方法在某些情况下可以胜过GPT-3。在第二阶段,您将应用自然语言理解(NLU)和自然语言生成(NLG)的转换器。最后,第三阶段将帮助您掌握高级语言理解技术,例如优化社交网络数据集和假新闻识别。 在这本NLP书籍的最后,您将从认知科学的角度理解变压器,并精通将技术巨头预先训练好的变压器模型应用于各种数据集。 您将学到什么 使用最新的预训练变压器模型 掌握原始Transformer,GPT-2,BERT,T5和其他变压器模型的工作原理 使用优于经典深度学习模型的概念创建理解语言的Python程序 使用各种NLP平台,包括Hugging Face,Trax和AllenNLP 将Python,TensorFlow和Keras程序应用于情感分析,文本摘要,语音识别,机器翻译等 测量关键变压器的生产率,以定义其范围,潜力和生产限制
2022-05-15 18:36:39 4.72MB Transformers NaturalLanguage nlp
1
Transformers 为数以千计的预训练模型奠定了基础(包括我们熟知的Bert、GPT、GPT-2、XLM等),支持100多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨就是让最先进的 NLP 技术人人易用。Transformer还提供了便于快速下载和使用的API,让你可以把预训练模型用于给定文本上,在自己的数据集上对它们进行微调,然后通过modle hub与社区共享它们。此外,Transformer由三个最热门的深度学习库——Jax、PyTorch和TensorFlow支持,它们之间可以无缝整合。
2022-05-11 17:06:09 10.71MB transformers 机器学习 深度学习 人工智能
1
DETR- End-to-End Object Detection with Transformers (Paper Explained),来自需要你懂得的网站视频,生肉版本。
2022-05-11 14:42:04 127.43MB detr 论文解析 生肉
1
DETR学习分享:内含PPT分享
2022-04-25 16:05:30 3.44MB 机器学习
1