神经网络模型普遍存在过拟合问题,所以采用增加3层丢弃层避免梯度消失的问题,利用adam优化器自动优化学习率。 本文使用ReLu Activation函数激活参数特征,然后连接Batch Normalization层和Dropout层,再用Flatten层对数据进行平滑处理,最后将数据输入两个堆叠的LSTM层输出预测数据。 经过多次调整超参数后,确定丢弃率为0.15。 为该单特征LSTM模型的损失变化图。由图可见,该模型损失函数的下降速度极快,在训练次数达到三百次左右时,损失已经基本维持在0附近,并逐步趋于平稳,说明该模型能够很快地收敛到一个较优的参数状态,避免了过拟合或欠拟合的问题。该模型的整体MAPE最低时达到10.69%,整体的拟合程度较高。
2023-10-11 23:01:33 6KB lstm 神经网络
1
Python基于LSTM模型的双色球预测源码
2023-07-22 19:43:20 26KB python lstm 软件/插件 双色球预测
1
在时间序列预测问题中,建立LSTM模型,采用python语言代码实现
2023-04-14 23:11:57 388KB lstm python 软件/插件
1
可以保存加载模型、有评价指标和训练过程的损失正确率图像,预测值和真实值对比等、正确率很高 绝对不是垃圾代码!!!!
2023-03-15 18:30:31 10.91MB python 机器学习 卷积神经网络 LSTM
1
1.基于RNN的神经网络 2.对于“记忆”的进一步优化 3.”门“结构 1.一些准备工作 2.搭建LSTM单元 3.运行测试
2023-02-25 08:55:06 358KB
1
这是一个LSTM模型,用于实现具有多个输入特征的单个输出的预测。 该数据集是作为我大学数据分析课程作业的一部分 项目是基于开、高、低(输入特征)的股票市场收盘价(输出)预测
2022-11-30 12:28:58 258KB LSTM 多输入单输出LSTM 单输出预测
时间序列LSTM 简单的LSTM模型可分析虚拟时间序列数据
2022-11-27 03:59:56 465KB Python
1
数据对应文章和实现代码链接 https://datayang.blog.csdn.net/article/details/126816417
2022-10-16 18:07:25 2.68MB 数据分析 机器学习 用户运营
1
Gobal Attention的目的:是为了在生成上下文向量(也可以认为是句向量)时将所有的hidden state都考虑进去。Attention机制认为每个单词在一句话中的重要程度是不一样的,通过学习得到一句话中每个单词的权重。即为关注重要特征,忽略无关特征。 本代码采样keras2.2.4\tensorflow1.12进行实现的。
1
Attention-BiLSTM模型结构及所有核心代码: 1.model中实验的模型有BiLSTM、ATT-BiLSTM、CNN-BiLSTM模型; Attention与BiLSTM模型首先Attention机制增强上下文语义信息,并获取更深层次特征,最后通过Softmax进行回归,完成所属语音情感的预测。 2.系统为用Flask搭建网页框架的语音识别系统界面; 对于提到的语音情感识别方法平台为基于Windows操作系统的个人主机,深度学习框架采用的是tensorflow和Keras,其中TensorFlow作为Keras的后端。具体配置如下python3.6.5、tensorflow=1.12、Keras=2.2.4、flask==1.0.2 、librosa等。 具体界面效果可以参考博客内容。​​