基于python对遥感影像的非监督分类
2021-10-18 20:05:45 4KB 非监督分类 python 遥感影像
1
【单峰子集分离的迭代算法】 概念:
2021-10-16 15:59:30 5.59MB 非监督学习 机器学习 模式识别 哈工大
1
以徐州市1987年9月的Landsat TM影像为信息源,利用3种方法对徐州市的土地利用进行了分类,并对分类结果进行了分析对比,最后提出用综合阈值法对城市土地利用进行分类,此方法能很好地区分城镇用地和裸地等不容易区分的地类,有效地降低混合像元带来的影响,提高土地利用信息的精度.
1
演示代码(请参阅jupyter笔记本): 使用深度卷积自动编码器对地震信号进行非监督(自我监督)区分 您可以从这里获取论文: 连结1: 连结2: 您可以从此处获取训练数据集: 参考: Mousavi, S. M., W. Zhu, W. Ellsworth, G. Beroza (2019). Unsupervised Clustering of Seismic Signals Using Deep Convolutional Autoencoders, IEEE Geoscience and Remote Sensing Letters, 1 - 5, doi:10.1109/LGRS.2019.2909218.
1
ISODATA算法是目前图像处理主流软件erdas、envi等,它们非监督分类最常采用的算法,分类效果好,
2021-09-24 15:07:47 363KB 非监督分类 C++ ISODATA
1
遥感非监督分类经典算法-ISODATA程序,C++写的,可直接运行
2021-09-03 19:16:40 673KB isodata 遥感 非监督分类
1
行业分类-物理装置-基于非监督机器学习的CNG加气子站异常加气行为识别方法.zip
给出了一种散射模型与Wishart分类相结合的极化合成孔径雷达(polarimetric synthetic aperture radar,PolSAR)图像非监督分类方法。首先利用去取向三分量散射模型进行粗分类,将像素划分为三种基本散射类型和混合散射类型;然后,在基本散射类型内根据占优散射机制的功率进行细分类,并根据Wishart距离对细分类的结果进行类别合并,合并到指定的类别数;最后对四种散射类型的像素分别重新进行Wishart迭代,从而实现极化SAR数据的非监督分类。利用美国AIRSAR机载系统采集的实测数据进行实验,并且同已有分类方法进行比较,结果表明本文方法改善了分类效果,且降低了体散射过估计。
1
领域:异常检测,深度学习 方法:非监督对抗学习 场景:硬盘故障检测 网络结构:基于LSTM自编码器与生成式对抗网络相结合 数据集:BackBlaze 采用非监督对抗学习的好处,由于训练阶段未用到异常样本(即正样本),模型不受样本不均衡的影响,很好的避免了由于训练样本不均衡导致的过拟合问题。 已有研究大都使用5 天以内的短期序列数据进行学习和检测,不能很好的学习到自我监测分析报告数据长期稳定的变化趋势,使得模型不具有鲁棒性。同时结合14年提出的生成式对抗网络。故提出了基于LSTM的自编码器与生成式对抗网络相结合的网络结构,采用对抗训练方法,使模型学习正常样本在样本空间和潜在空间两个....
1
IDL调用ENVI库函数实现非监督分类的代码
2021-06-30 18:51:59 4KB IDL 非监督分类
1