随机森林
这是 Spark 上随机森林算法的分布式实现。 这与 mllib 中可用的相同算法的实现不同。 在 mllib 中,随机森林算法是通过明智地拆分数据实例来实现的。 此实现是通过明智地拆分数据特征。 这种实现对于具有许多特征的数据非常有用。 我也做了一些即兴创作,删除了一些在这种实现方法中可以避免的类。 一个重要的改进是:现在,randomForest 的用户不需要提供 categoricalFeatureInfo(关于哪些是连续特征,一个分类特征包含多少类别的信息)作为输入。它现在被转换为一个 Option 这个实现会自动检测哪些是连续特征连续特征以及当 categoricalFeatureInfo 在用户输入中被指定为 None 时,分类特征包含多少个类别。
2022-06-04 03:47:54
1.02MB
Scala
1