标准微粒群算法(PSO)通常被用于求解连续优化的问题,很少被用于离散问题的优化求解,如作业车间调度问题(JSP)。
因此,针对PSO算法易早熟、收敛慢等缺点提出一种求解作业车间调度问题(JSP)的混合微粒群算法。算法将微粒群算法、遗传
算法(GA)、模拟退火(SA)算法相结合,既增强了算法的局部搜索能力,降低了算法对参数的依赖,同时改善了PSO算法和GA算
法易早熟的缺点。对经典JSP问题的仿真实验表明:与标准微粒群算法相比,该算法不仅能有效避免算法中的早熟问题,并且算
法的全局收敛性得到了显著提高。
1