python机器视觉学习合集, 包含: 19. 基于 OpenCV 的车辆变道检测 20. 基于 OpenCV 的多位数检测器 21. 基于 OpenCV 的焊件缺陷检测 22. 基于 OpenCV 的人脸追踪 23. 基于 OpenCV 的人员剔除 24. 基于 OpenCV 的实时睡意检测系统 25. 基于 OpenCV 的实时停车地点查找 26. 基于 OpenCV 的图像强度操作 27. 基于 OpenCV 的网络实时视频流传输 28. 基于 OpenCV 的位姿估计 29. 基于 OpenCV 的直方图匹配 30. 基于 OpenCV 的阈值车道标记 31. 基于 OpenCV 建立视差图像 32. 使用 OpenCV 预处理神经网络中的面部图像 33. 使用 OpenCV 实现车道线检测 34. 基于 Python 进行相机校准 35. 基于 OpenCV 的车牌识别 36. 基于 OpenCV 的情绪检测 37. 基于 OpenCV 的表格文本内容提取 38. 基于 OpenCV 的实时面部识别 39. 基于 OpenCV 的图像卡通化
2025-04-09 15:32:58 105.23MB opencv 机器视觉
1
白帽子Web安全 纯html版本 可缩放字体大小 EPUB版本 方便移动端阅读
2025-03-19 14:53:26 1.49MB 网络安全 web安全
1
DeepSeek如何赋能职场应用?——从提示语技巧到多场景应用中央民族大学 新闻与传播学院清华大学 @新媒沈阳 团队向安玲
2025-02-14 14:57:10 9.57MB
1
《西电—DSP原理及应用视频教程》全39,涵盖了数字信号处理(DSP)的基础理论和实际应用,是学习这一领域的宝贵资源。该教程由西安电子科技大学(西电)提供,旨在深入浅出地解DSP的核心概念和技术,帮助学习者掌握这一领域的关键知识。 1. **数字信号处理基础**: 数字信号处理是一种利用数字计算技术对信号进行分析、变换、滤波、增益控制等操作的方法。在本教程中,你将学习到离散时间信号与连续时间信号的区别,以及如何通过采样和量化将连续信号转化为可处理的数字信号。 2. **DSP系统结构**: DSP芯片是专门设计用于高速、高效处理数字信号的集成电路。教程中会介绍典型的DSP处理器架构,包括哈佛结构、流水线处理、硬件乘法器等特性,以及如何利用这些特性实现快速运算。 3. **滤波器设计**: DSP在信号滤波中的应用广泛,包括低通、高通、带通和带阻滤波器。教程会详细解IIR(无限 impulse响应)和FIR(有限 impulse响应)滤波器的设计方法,如窗函数法、频率采样法等。 4. **谱分析与信号变换**: 学习者将了解到傅里叶变换在信号分析中的作用,包括快速傅里叶变换(FFT)及其逆变换,并探讨其他变换,如小波变换和拉普拉斯变换,以及它们在时频分析中的应用。 5. **数字信号处理算法**: 包括数字滤波算法、自适应滤波、谱估计、噪声抑制、信号增强等,这些都是实际应用中的关键环节。教程将深入解析这些算法的原理和实现步骤。 6. **通信系统中的DSP**: 在无线通信、数字通信等领域,DSP技术扮演着重要角色。教程会解如何使用DSP处理调制、解调、信道编码和解码等问题。 7. **音频和图像处理**: DSP技术在音频处理中用于音质改善、降噪、混响等;在图像处理中涉及边缘检测、图像增强、压缩等。这些都会在教程中有所涉及。 8. **实时系统与嵌入式开发**: 学习如何将DSP理论应用于实际系统,包括使用C语言或汇编语言编程,以及在TMS320C5x、TMS320C6x等典型DSP芯片上的程序开发。 9. **实验与实践**: 通过实例和实验,学习者将有机会运用所学知识解决实际问题,提高动手能力和工程素养。 该教程共39,从基础理论到实践应用,系统全面地介绍了DSP的各个方面。通过学习,无论是对学术研究还是工程实践,都能为学习者提供坚实的技术基础。文件列表中的"01"至"06"可能代表了教程的前六内容,覆盖了基础理论和部分核心主题。继续深入学习,将有助于你全面掌握数字信号处理的精粹。
2025-01-11 12:46:17 983.21MB DSP 原理及应用
1
本文题为《背包问题九》,从属于《动态规划的思考艺术》系列。 这系列文章的第一版于2007年下半年使用EmacsMuse制作,以HTML格式发 布到网上,转载众多,有一定影响力。 2011年9月,本系列文章由原作者用LATEX重新制作并全面修订,您现在看 到的是2.0 alpha1版本,修订历史及最新版本请访问https://github.com/tianyicui/ pack 查阅。 本文版权归原作者所有,采用CC BY-NC-SA 协议发布。 ### 背包问题九 2.0 alpha1 知识点解析 #### 一、01背包问题 **1.1 题目** 01背包问题是最基础的背包问题之一,主要关注如何从N件物品中选择一些放入容量为V的背包内,使得这些物品的总价值最大化。每件物品只能选择放入或不放入,不可分割。 **1.2 基本思路** - **状态定义**: `F[i, v]` 表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。 - **状态转移方程**: \[ F[i, v] = \max\{F[i - 1, v], F[i - 1, v - C_i] + W_i\} \] 其中: - \(F[i - 1, v]\) 表示不放入第i件物品的情况; - \(F[i - 1, v - C_i] + W_i\) 表示放入第i件物品的情况。 - **伪代码**: ```plaintext F[0, 0..V] = 0 for i = 1 to N for v = C_i to V F[i, v] = max{F[i - 1, v], F[i - 1, v - C_i] + W_i} ``` **1.3 优化空间复杂度** 原始算法的时间复杂度和空间复杂度都是\(O(NV)\)。为了减少空间占用,可以将空间复杂度优化到\(O(V)\)。具体做法是在主循环中只维护一个一维数组\(F[0..V]\)来存储当前层的结果,并按从大到小的顺序更新数组中的元素,确保每个\(F[v]\)的计算都是基于前一层的数据完成的。 **1.4 初始化的细节问题** 在实际编程中,通常需要对初始条件进行处理。例如,在这里,所有\(F[0, v]\)的值被设置为0,这是因为没有物品的情况下,无论背包容量是多少,所能获得的价值总是0。 **1.5 一个常数优化** 在计算过程中,可以通过一些技巧进一步提高效率,比如预处理一些常用数据,避免重复计算等。 **1.6 小结** 01背包问题的关键在于理解状态转移方程的意义,并正确地应用它。优化后的空间复杂度降低了算法的资源消耗,使其更适用于大规模问题。 #### 二、完全背包问题 **2.1 题目** 与01背包问题不同,完全背包问题允许每种物品可以无限次选择放入背包。 **2.2 基本思路** - **状态定义** 同01背包问题,但在状态转移时,需要考虑同一种物品可以多次放入的情况。 - **状态转移方程**: \[ F[i, v] = \max\{F[i, v], F[i - 1, v - k \cdot C_i] + k \cdot W_i\} (k \cdot C_i \leq v) \] 其中\(k\)表示放入第i件物品的数量。 **2.3 一个简单有效的优化** 对于完全背包问题,可以直接利用01背包问题的思想进行优化。具体来说,可以将每种物品重复若干次后作为一个新的01背包问题来解决。 **2.4 转化为01背包问题求解** 另一种方法是直接将完全背包问题转化为01背包问题,通过扩展物品集合来模拟每种物品可以多次选择的情况。 **2.5 O(VN)的算法** 虽然状态转移方程的形式看起来较为复杂,但是通过对状态转移过程的分析,可以发现完全背包问题同样可以使用O(VN)的时间复杂度进行求解。 **2.6 小结** 完全背包问题的关键在于理解物品可以重复选择的特性,并合理设计状态转移方程来反映这一特点。 #### 三、多重背包问题 **3.1 题目** 多重背包问题允许每种物品有一定的数量限制,每种物品可以选择不超过其数量限制地放入背包。 **3.2 基本算法** - **状态定义** 与01背包相同。 - **状态转移方程**: \[ F[i, v] = \max\{F[i, v], F[i - 1, v - j \cdot C_i] + j \cdot W_i\} (j \cdot C_i \leq v, j \leq 数量限制) \] **3.3 转化为01背包问题** 多重背包问题也可以通过扩展物品集合的方法转化为01背包问题来解决。 **3.4 O(VN)的算法** 多重背包问题同样可以通过O(VN)的时间复杂度进行求解。 **3.5 小结** 多重背包问题的关键在于理解每种物品数量有限的特点,并合理设计状态转移方程来反映这一限制。 #### 四、混合三种背包问题 **4.1 问题** 在实际问题中,往往需要同时处理01背包、完全背包以及多重背包的混合情况。 **4.2 01背包与完全背包的混合** 当面对01背包与完全背包的混合问题时,可以将两种类型的物品分别处理,然后再综合起来。 **4.3 再加上多重背包** 进一步扩展到包括多重背包的情况,则需要更加细致地设计状态转移方程。 **4.4 小结** 混合背包问题的解决策略取决于具体的物品类型组合,关键在于合理设计状态转移方程来适应不同的背包类型。 #### 五、二维费用的背包问题 **5.1 问题** 当物品不仅有一个成本维度(如重量),还有一个额外的成本维度(如体积)时,问题变得更为复杂。 **5.2 算法** 针对二维费用的背包问题,需要重新定义状态和状态转移方程。 **5.3 物品总个数的限制** 除了考虑费用限制外,还需要考虑到物品数量的限制。 **5.4 复整数域上的背包问题** 在某些特殊情况下,背包问题还可以扩展到复整数域上,涉及到复数的运算。 **5.5 小结** 二维费用的背包问题增加了问题的难度,需要更精细的设计来解决问题。 #### 六、分组的背包问题 **6.1 问题** 当物品可以分为几个组,每个组内的物品具有相似的属性时,这种问题被称为分组背包问题。 **6.2 算法** 针对分组背包问题,可以将同一组内的物品视为整体来处理。 **6.3 小结** 分组背包问题的关键在于合理地划分物品组,并设计相应的状态转移方程。 #### 七、有依赖的背包问题 **7.1 简化的问题** 在某些情况下,物品之间存在依赖关系,需要特别处理。 **7.2 算法** 对于有依赖的背包问题,需要考虑物品之间的依赖关系,并相应调整状态转移方程。 **7.3 较一般的问题** 更一般的问题可能涉及复杂的依赖关系。 **7.4 小结** 有依赖的背包问题需要特别注意物品之间的相互影响。 #### 八、泛化物品 **8.1 定义** 泛化物品的概念可以用来解决更加复杂的问题,如物品的价值或成本可以是任意函数形式。 **8.2 泛化物品的和** 泛化物品的概念可以应用于物品的总价值或总成本。 **8.3 背包问题的泛化物品** 在背包问题中,泛化物品可以进一步拓展问题的应用范围。 **8.4 小结** 泛化物品的概念为解决更加复杂的问题提供了可能性。 #### 九、背包问题问法的变化 **9.1 输出方案** 不仅仅是输出最大价值,还需要输出达到该最大价值的具体方案。 **9.2 输出字典序最小的最优方案** 在输出方案的同时,还需要考虑输出字典序最小的方案。 **9.3 求方案总数** 求解所有达到最大价值的方案总数。 **9.4 最优方案的总数** 进一步考虑最优方案的数量。 **9.5 求次优解、第K优解** 求解次优解或者第K优解等问题。 **9.6 小结** 背包问题的变化形式丰富多样,需要根据具体问题灵活应对。 通过以上总结可以看出,背包问题涵盖了多个不同的变体,每种变体都有其独特之处。在解决实际问题时,需要根据具体情况选择合适的方法和技术。
2024-10-13 14:39:19 236KB 背包问题 动态规划
1
教程名称:       Domino基础管理教学视频(13)【】八:domino服务器中notes安全性介绍.zip【】二:计划与准备domino服务器的安装与配置.zip【】九:怎样使用domino的管理控制台.zip【】六:domino服务器的复本概念和复制过程.zip【】七:domino服务器中层次命名.zip【】三:domino 资源太大,传百度网盘了,链接在附件中,有需要的同学自取。
2024-08-25 01:21:33 125B
1
YOLO(You Only Look Once)是一种广泛应用于计算机视觉领域中的实时目标检测算法,因其高效、准确的特点而备受关注。在本教程"目标检测YOLO实战应用案例100-基于YOLOV5的小目标检测"中,我们将深入探讨如何利用YOLOV5这一最新版本的YOLO框架来处理小目标检测的挑战。 小目标检测是目标检测领域的一个难题,因为小目标在图像中的尺寸相对较小,容易被背景噪声淹没,导致检测难度增大。YOLOV5作为YOLO系列的最新发展,通过一系列改进优化了小目标检测性能。 1. YOLOV5概述:YOLOV5由Joseph Redmon等人开发,继承了YOLO系列的一贯优势——快速和准确。它采用了更先进的网络结构,包括ResNet、SPP-Block、FPN(Feature Pyramid Network)等,增强了特征提取的能力,尤其对小目标有更好的响应。 2. 数据预处理:在训练模型前,数据预处理至关重要。这包括图像的归一化、尺度变换以及数据增强,如翻转、旋转、裁剪等,以提高模型对不同场景的泛化能力。 3. 网络结构:YOLOV5的核心在于其网络架构,包括CSPNet用于减少计算冗余,SPP-Block增强特征表示,和 PANet 构建金字塔特征层级,这些设计都有助于捕捉小目标的细节。 4. 训练策略:使用批归一化(Batch Normalization)、权重初始化和学习率调度策略,如Warmup和Cosine Annealing,能够加速模型收敛并提升最终性能。 5. 损失函数:YOLOV5使用多任务损失函数,包含分类损失、坐标回归损失和置信度损失,这些损失的综合优化有助于提升小目标检测的精度。 6. 实战应用:教程中将涵盖各种实际应用场景,如视频监控、自动驾驶、无人机侦查等,通过具体案例帮助理解YOLOV5在小目标检测中的应用和优化技巧。 7. 部署与优化:学习如何将训练好的模型部署到实际系统中,同时探讨如何进行模型轻量化和加速,使其适应边缘计算设备。 8. 评估指标:了解IoU(Intersection over Union)、AP(Average Precision)等评估指标,理解它们如何衡量模型的检测效果,以及如何根据这些指标调整模型参数。 通过本课程的学习,你将掌握YOLOV5的核心原理和实践技巧,具备解决小目标检测问题的能力,为你的计算机视觉项目增添强大工具。同时,通过100个实战案例,你将有机会深入理解并应对各类挑战,提升自己的实战技能。
2024-08-24 13:26:55 2.53MB 目标检测
1
SLAM十四依赖 Ceres、g2o优化库,Windows下的编译较为困难。以下为VS的配置以及编译好的 1.头文件 D:\include\Ceres_Install\install\ceres\include;D:\include\Ceres_Install\install\glog\include;D:\include\Ceres_Install\install\gflags\include;D:\include\Ceres_Install\install\suitesparse\include;D:\include\eigen-3.4.0\eigen-3.4.0;D:\include\opencv\opencv\build\include\opencv2;D:\include\opencv\opencv\build\include;$(IncludePath)
2024-07-07 16:49:54 124.08MB opencv windows
1
第03:uni-pagination实现表格分页查询
2024-05-23 12:00:42 20.66MB uniapp
1
目标检测YOLO实战应用案例100-激光雷达的3D目标检测
2024-04-24 18:33:08 377.67MB 目标检测
1