内容概要:本文详细介绍了制动能量回收系统(BRS)及其在Simulink环境下的建模方法。文章从概念解读入手,解释了BRS的工作原理,即将车辆制动或减速时产生的多余能量转化为电能并通过电机存储。接着,文章深入探讨了Simulink模型的具体构建,包括制动过程模块、电机控制模块和电池模块的设计与实现。每个模块的功能和相互关系都得到了详细的解析,特别是扭矩和电池SOC作为关键参数的作用。最后,文章还涉及了各模块的代码编写,强调了物理原理和数学模型的应用,以及Simulink语言的熟练掌握。 适合人群:汽车工程领域的研究人员和技术人员,尤其是对新能源汽车技术和能量管理感兴趣的从业者。 使用场景及目标:适用于希望深入了解和研究制动能量回收系统的专业人士,旨在提高能源利用效率,优化电动汽车性能。通过学习和实践,读者可以掌握如何在Simulink环境中建立和优化BRS模型。 其他说明:文章不仅提供了理论知识,还包括实际的代码示例,有助于读者更好地理解和应用所学内容。
2025-11-26 16:54:32 393KB Simulink MATLAB 控制系统
1
随着社会的快速发展和科技的不断进步,数字孪生技术正逐渐成为各行各业关注的热点。作为数字化改革和区域经济发展的重要导览图,数字孪生技术通过打通物理世界与数字世界的隔阂,实现了虚实融合,已广泛应用于智能制造、智能建造、智慧医疗、智慧城市等多个垂直行业。通过智能算法的辅助,数字孪生技术不仅实现了物理信息系统的实时联动,还能够进行智能运维、虚拟调试、异常诊断、风险预测、决策辅助和系统优化等应用。 数字孪生世界企业联盟的成立,旨在贯通数字孪生产业上下游,打造协同创新生态。该联盟聚焦于数字孪生技术基础设施的发展,深入分析产业化元宇宙发展趋势及技术体系,并探讨了城市、工厂、流域、双碳等典型行业的应用场景,为产业界在规划建设数字孪生世界时提供了宝贵的参考和借鉴,推动了数字孪生技术的演进和产业发展。 2025年数字孪生与智能算法白皮书是继2022年和2023年白皮书之后的又一力作,它不仅延续了数字孪生技术与智能算法在各行各业应用案例的深度剖析,还为技术的进一步发展和应用提供了新的视角。白皮书中提及的“V”模型数字孪生世界方法论,是行业内对数字孪生技术应用和理论构建的新探索,为实现城市可持续发展和促进数字经济发展提供了重要的技术抓手。 在数字化转型的背景下,数据分析与决策能力已成为组织的核心能力。数字孪生技术的演进使得数据可视化变得越来越普遍,并进一步演变为数据孪生技术,能够在数字世界中实时呈现数据并进行分析,甚至反向操控物理世界的实体。这种技术的发展,不仅为学术界和工业界提供了新的研究方向,也为企业的数字化转型和政府的数字化改革提供了新的路径。 数字孪生技术的发展和应用,对促进企业数字化转型、提高生产效率和推动数字经济发展具有重要作用。从传统的军工及航空航天领域,到当前的智能制造、智慧城市等领域,数字孪生技术的应用范围不断扩大,其重要性日益凸显。在数字孪生技术的推动下,城市运行效能得到提升,城市治理中的实际问题得以解决,为城市治理水平的提升开辟了新的路径。 数字孪生技术之所以受到产业、资本、政府的广泛关注和投入,不仅因为它能够促进企业的数字化转型,还因为它有助于实现城市的可持续发展。数字孪生城市作为智慧城市的升级版,为未来的城市规划和发展提供了新的想象空间。通过数字孪生技术的应用,城市能够以更加高效、智能的方式进行管理和服务,推动社会经济发展进入一个全新的阶段。 数字孪生技术作为一种集成优势技术,正逐步成为数字化转型的核心力量。它不仅仅在技术层面取得突破,更在实际应用中展现出巨大的潜力和价值。随着技术的不断发展和应用的不断深入,数字孪生技术将为各行各业带来更为深远的影响,并成为推动未来社会发展的重要力量。
2025-11-22 21:15:22 16.92MB 数字孪生 智能算法 智慧城市 能源管理
1
内容概要:本文详细介绍了如何使用MATLAB实现综合能源系统中的主从博弈模型。作者首先展示了主从博弈的核心迭代逻辑,包括领导者和跟随者的优化策略以及价格更新方法。文中强调了带惯性的价格更新策略和价格弹性矩阵的应用,以提高收敛速度并处理多能源品类的耦合关系。此外,还讨论了收敛性调参的方法,如使用松弛因子防止震荡,并提供了可视化策略迭代图的代码。最后,作者提出了将主从博弈模块封装成独立类的建议,以便更好地应用于实际的综合能源系统中。 适合人群:具备MATLAB编程基础并对综合能源系统和博弈论感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于研究和开发综合能源系统中涉及的多主体决策问题,尤其是处理电网公司和用户的交互决策。目标是通过主从博弈模型优化能源定价策略,实现系统效益的最大化。 其他说明:文中不仅提供了详细的代码实现,还包括了一些调试技巧和个人经验分享,帮助读者更好地理解和应用主从博弈模型。
2025-11-06 16:37:21 788KB MATLAB 优化算法 可视化
1
内容概要:本文深入解析了一个区域综合能源系统的规划模型,涵盖冷热电联供系统的设备选型、成本优化及约束条件设定。首先介绍了数据预处理方法,将8天的冷热电负荷数据扩展为全年数据,并进行归一化处理。接着详细解释了设备建模部分,如燃气三联供系统的效率分段函数以及设备间的协同关系。目标函数方面,不仅考虑了设备的投资成本,还包括运行燃料成本,并引入了时间权重来处理不同时段的价格差异。约束条件涵盖了供电缺口、冷量平衡、供气管道限制等多个方面。最后,利用CVXPY和Gurobi求解器进行了优化求解,并提供了详细的可视化结果展示。 适合人群:从事能源系统规划的研究人员和技术人员,尤其是对冷热电联供系统感兴趣的读者。 使用场景及目标:适用于希望深入了解区域综合能源系统规划模型的设计思路和实现细节的人群。目标是帮助读者掌握从数据预处理到模型求解的完整流程,理解如何通过数学模型优化能源系统的配置和运营。 其他说明:文中提供的代码片段展示了关键步骤的具体实现,附带详尽的注释,便于理解和复现。此外,还讨论了一些常见的陷阱和优化技巧,如设备低负荷运行效率下降、冷热电负荷单位换算等问题。
2025-10-16 23:59:07 287KB
1
内容概要:本文探讨了综合能源系统(微电网)的多电源容量优化配置及其运行策略,采用双层优化模型。上层模型旨在使投资成本最小化,下层模型则致力于将购售电成本和燃料成本降至最低。文中提供了详细的Python代码示例,展示了如何通过迭代过程不断调整容量和运行策略,最终达到成本最优。此外,还讨论了实际应用中的注意事项,如设备寿命、储能配置敏感性和约束条件的模块化设计等。 适合人群:从事能源系统规划、优化算法研究的专业人士,尤其是对微电网感兴趣的工程师和技术研究人员。 使用场景及目标:适用于需要进行综合能源系统规划和优化的企业或机构,帮助他们制定合理的容量配置方案和运行策略,以实现能源高效利用和成本降低。 其他说明:文章不仅介绍了理论概念,还提供了具体的技术实现细节,有助于读者更好地理解和应用于实际项目中。同时强调了在实际应用中应注意的一些关键点,如设备寿命、储能配置敏感性等。
2025-10-16 23:42:34 798KB Python
1
内容概要:本文详细介绍了100kW微型燃气轮机在Simulink环境下的建模及其控制单元模块的分析。模型涵盖了压缩机、容积、回热器、燃烧室、膨胀机、转子和控制单元七大模块,特别强调了变工况下各参数(如流量、压缩绝热效率、膨胀绝热效率、压缩比、膨胀比)对系统性能的影响。文中还探讨了三种主要控制策略(转速控制、温度控制和加速度控制),并通过实例展示了这些控制策略在负载变化时的具体应用。此外,文章提供了具体的MATLAB/Simulink代码片段,解释了压缩比、转动惯量等关键参数的计算方法及其对系统稳定性的重要影响。 适合人群:从事分布式能源系统设计、微型燃气轮机研究及相关领域的工程师和技术人员。 使用场景及目标:适用于需要深入了解微型燃气轮机动态特性和控制策略的研究人员,帮助他们掌握Simulink建模技巧,优化系统性能,提高仿真精度。 其他说明:文章不仅提供了理论分析,还结合实际案例和代码示例,使读者能够更好地理解和应用所学知识。
2025-10-14 21:23:23 306KB Simulink MATLAB 分布式能源
1
“电气综合能源系统研究:利用分布鲁棒机会约束应对风电不确定性风险与模糊集处理”,电气综合能源系统中基于分布鲁棒机会约束的协同经济调度策略与仿真研究,分布鲁棒;复现;电气综合能源系统;分布鲁棒机会约束(DRCC);ADMM分布式算法;全网独,恶意差评的请绕路 有意者加好友 注:非完美复现 研究内容:为了应对风电不确定性给电气综合能源系统带来的运行风险,采用分布鲁棒机会约束,通过数据驱动的方式,以少量的风电预测误差历史数据得到与矩信息有关的模糊集,并将形成的机会约束问题转化为易于求解的形式。 仿真软件:matlab 参考文档:《不确定风功率接入下电-气互联系统的协同经济调度》fuxian 注意事项[火][火]:代码注释详细,运行稳定,仿真结果如下所示。 ,分布鲁棒;复现;电气综合能源系统;分布鲁棒机会约束(DRCC);ADMM分布式算法;数据驱动;风电预测误差;协同经济调度;Matlab仿真;运行稳定。,分布式鲁棒策略下的电气综合能源系统研究与仿真实现
2025-10-09 15:32:29 535KB xbox
1
内容概要:本文详细介绍了如何利用Python实现综合能源负荷预测和微电网优化调度。首先,通过随机森林算法对历史数据进行处理,提取关键特征并构建负荷预测模型,特别强调了时间特征工程的重要性。接着,引入粒子群算法(PSO)用于优化微电网调度方案,具体展示了如何设置粒子群参数、定义成本函数以及实现功率平衡约束。实验结果显示,该方法能够有效降低用能成本约18.7%,并在实际应用中提供了灵活性和扩展性。 适合人群:对综合能源系统、负荷预测及优化调度感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要进行能源管理和优化的企业或研究机构,旨在提高能源利用效率,降低成本。通过学习本文提供的方法,可以掌握从数据预处理到模型建立再到优化调度的完整流程。 其他说明:建议初学者先使用公开数据集练习,熟悉整个流程后再应用于真实项目中。文中提到的技术细节如特征工程、PSO参数调整等对于获得良好效果至关重要。
2025-09-27 15:50:41 13.89MB
1
内容概要:文章提出基于多目标粒子群优化(PSO)算法的微电网能源系统综合运行优化策略,针对包含燃气发电机、蓄电池、制冷机组等多组件的微电网系统,构建分时段调度模型,以最小化运行成本为目标,结合能量平衡、设备容量与储能状态等约束条件。通过Python实现PSO算法,并引入模拟退火扰动机制提升全局搜索能力,有效降低运营成本17%。同时探讨了算法在多目标优化中的局限性及改进方向。 适合人群:具备一定编程与优化算法基础,从事能源系统优化、智能算法应用或微电网运行研究的工程师与科研人员,工作年限1-3年及以上。 使用场景及目标:①应用于微电网系统的分时调度优化,实现经济运行;②结合PSO与模拟退火思想提升优化算法的跳出局部最优能力;③为后续引入碳排放等多目标优化提供技术路径参考。 阅读建议:建议结合代码实现深入理解粒子编码方式、成本函数设计及约束处理机制,关注储能状态动态更新与惩罚项设置技巧,并可进一步扩展至NSGA-II等多目标算法实现综合优化。
2025-09-27 15:43:48 231KB
1
内容概要:本文详细探讨了利用改进粒子群算法(PSO)进行微电网综合能源优化调度的方法。首先介绍了微电网的概念及其优化调度的重要性,然后建立了包含可再生能源、储能系统和常规能源在内的优化模型,优化目标涵盖经济性和环保性。接着,针对传统PSO算法存在的局限性,提出了引入自适应惯性权重、动态调整加速因子以及混合变异操作的改进措施。文中还提供了Python代码实现,展示了改进算法的具体步骤,并通过实验验证了其优越性。结果显示,改进后的PSO算法在收敛速度和解质量方面均有显著提升。 适合人群:从事微电网研究、智能优化算法开发的研究人员和技术人员,尤其是对粒子群算法有一定了解并希望应用于实际工程问题的人士。 使用场景及目标:适用于需要对微电网进行高效、经济且环保的能源调度的场合,旨在通过改进的粒子群算法实现快速收敛和高质量的优化解,从而降低成本并减少环境污染。 其他说明:本文不仅提供了理论分析,还包括详细的代码实现,有助于读者更好地理解和应用所提出的改进算法。此外,文中提到的改进策略对于其他类似优化问题也具有一定的借鉴意义。
2025-09-27 15:42:00 4.99MB
1