为准确预测巷道围岩稳定性类别,提出了基于网格搜索法(GSM)优化支持向量机(SVM)的巷道围岩稳定性预测模型。选取22组巷道围岩数据作为学习样本,以水平地应力与巷道夹角、顶板岩性、水的影响和巷道断面积4个指标作为模型输入,巷道围岩稳定程度作为模型输出,同时为增强模型的泛化性能和预测精度,采用改进的网格搜索方法优化支持向量机参数,最终构建基于GSM-SVM的巷道围岩稳定性预测模型。然后运用该模型对8组巷道围岩数据进行预测,并同BP神经网络模型的结果进行对比。结果表明,GSM-SVM模型的预测结果与实际结果吻合,正确率达98%,具有比BP神经网络模型更高的精度。
1