马尔科夫与ARIMA 组合模型对地区降雨量的预测研究.pdf
2022-02-21 09:05:11 1.17MB 深度学习 机器学习 人工智能 技术文档
本文假设投资者是风险厌恶型,用CVaR作为测量投资组合风险的方法.在预算约束的条件下,以最小化CVaR为目标函数,建立了带有交易费用的投资组合模型.将模型转化为两阶段补偿随机优化模型,构造了求解模型的随机L- S算法.为了验证算法的有效性,用中国证券市场中的股票进行数值试验,得到了最优投资组合、VaR和CVaR的值.而且对比分析了有交易费和没有交易费的最优投资组合的不同,给出了相应的有效前沿.
2022-02-21 08:44:53 920KB 自然科学 论文
1
为了提高预测模型的精度,给出了一种新的组合预测模型.利用时间序列ARIMA预测模型、BP神经网络及GM灰色预测模型进行单一模型的拟合与预测,通过赋予适当权系数结合三种方法得到了新的组合预测模型.山西省人均GDP预测实例应用结果表明:组合预测模型很好地描述了山西省人均GDP的非线性发展,比单一预测方法具有更高的预测精度.组合模型发挥了这三种模型各自的优势,可以作为人均GDP预测的有效方法,该模型在时间序列的预测中是有效的.
2022-02-09 10:41:59 306KB 行业研究
1
为减轻日益严重的交通拥堵问题,实现智能交通管控,给交通流诱导和交通出行提供准确实时的交通流预测数据,设计了基于长短时记忆神经网络(LSTM)和BP神经网络结合的LSTM-BP组合模型算法.挖掘已知交通流数据的特征因子,建立时间序列预测模型框架,借助Matlab完成从数据的处理到模型的仿真,实现基于LSTM-BP的短时交通流精确预测.通过与LSTM\BP\WNN三种预测网络模型的对比,结果表明LSTM-BP预测的时间序列具有较高的精度和稳定性.该模型的搭建,可对交通分布的预测、交通方式的划分、实时交通流的分配提供依据和参考.
1
介绍了CVaR的概念及算法,并利用CVaR对风险进行度量,提出一个新的基于CVaR风险度量方法的投资组合优化模型。利用股票数据进行了实证分析,验证了模型的有效性。
2021-12-20 18:36:36 154KB 工程技术 论文
1
当今时代,科学技术高速发展,涌现出一批新技术,数据挖掘、机器学习等新科学领域被深入研究,众多智能算法逐渐出现,同时被应用到了不同的领域中.本文构建了一种基于BP (Back Propagation)神经网络和SVR (Support Vector Regression)支持向量回归机的组合模型.依托于农产品价格数据进行实例验证分析,结果表明相对于单一的预测模型,BP-SVR-BP组合模型在预测精度上有了很大的提升,拟合效果更加逼近真实数据曲线,能够客观真实的反应农产品物价变化规律.
1
CS291K 使用CNN-LSTM组合神经网络模型对Twitter数据进行情感分析 论文: : 博客文章: : 动机 该项目旨在扩展我们以前使用简单的前馈神经网络(位于此处: & )进行的情绪分析工作。 相反,我们希望尝试使用Tensorflow构建组合的CNN-LSTM神经网络模型,以对Twitter数据进行情感分析。 依存关系 sudo -H pip install -r requirements.txt 运行代码 在train.py上,更改变量MODEL_TO_RUN = {0或1} 0 = CNN-LSTM 1 = LSTM-CNN 随时更改其他变量(batch_
1
基于神经网络与马尔可夫组合模型在城市公路使用性能中的预测实现,孙彬彬,王虹,城市道路使用性能关乎是城市道路建设的延续,其运行管理是确保城市道路运行状态的关键。随着我国经济和交通的快速发展,城市道路的�
2021-10-18 01:24:38 534KB 公路性能预测
1
组合模型在信用评估上的研究毕设.ipynb
2021-10-14 11:01:12 141KB 组合模型
1
当今时代, 网络舆情传播速度快、影响力大, 而话题检测在网络舆情监管中有着不可替代的作用. 针对传统方法提取文本特征不完整和特征维度过高的问题, 本文提出了基于时间衰减因子的LDA&&Word2Vec文本表示模型, 将LDA模型的隐含主题特征和Word2Vec模型的语义特征进行加权融合, 并引入了时间衰减因子, 同时起到了降维和提高文本特征完整度的作用. 同时, 本文又提出了Single-Pass-SOM组合聚类模型, 该模型解决了SOM模型需要设定初始神经元的问题, 提高了话题聚类的精度. 实验结果表明, 本文提出的文本表示模型和文本聚类方法较传统方法拥有更好的话题检测效果.
1