讲述系统化思考方式,对系统化思维有好处。
2020-01-29 03:10:29 11.17MB 系统之美
1
《电子战接收机与接收系统》2016 美)泊伊泽_13918356[官方原版]
2019-12-21 19:43:26 93.53MB 通信
1
自己花钱买的电子书,高清完整版!很实用的教材,读起来一点也不晦涩。 目 录 译者序 前言 第1章 概论 1.1 推动因素 1.2 基本计算机组成 1.3 分布式系统的定义 1.4 我们的模型 1.5 互连网络 1.6 应用与标准 1.7 范围 1.8 参考资料来源 参考文献 习题 第2章 分布式程序设计语言 2.1 分布式程序设计支持的需求 2.2 并行/分布式程序设计语言概述 2.3 并行性的表示 2.4 进程通信与同步 2.5 远程过程调用 2.6 健壮性 第 3 章 分布式系统设计的形式方法 3.1 模型的介绍 3.1.1 状态机模型 3.1.2 佩特里网 3.2 因果相关事件 3.2.1 发生在先关系 3.2.2 时空视图 3.2.3 交叉视图 3.3 全局状态 3.3.1 时空视图中的全局状态 3.3.2 全局状态:一个形式定义 3.3.3 全局状态的“快照” 3.3.4 一致全局状态的充要条件 3.4 逻辑时钟 3.4.1 标量逻辑时钟 3.4.2 扩展 3.4.3 有效实现 3.4.4 物理时钟 3.5 应用 3.5.1 一个全序应用:分布式互斥 3.5.2 一个逻辑向量时钟应用:消息的 排序 3.6 分布式控制算法的分类 3.7 分布式算法的复杂性 第4章 互斥和选举算法 4.1 互斥 4.2 非基于令牌的解决方案 4.2.1 Lamport算法的简单扩展 4.2.2 Ricart和Agrawala的第一个算法 4.2.3 Maekawa的算法 4.3 基于令牌的解决方案 4.3.1 Ricart和Agrawala的第二个算法 4.3.2 一个简单的基于令牌环的算法 4.3.3 一个基于令牌环的容错算法 4.3.4 基于令牌的使用其他逻辑结构的 互斥 4.4 选举 4.4.1 Chang和Roberts的算法 4.4.2 非基于比较的算法 4.5 投标 4.6 自稳定 第5章 死锁的预防、避免和检测 5.1 死锁问题 5.1.1 死锁发生的条件 5.1.2 图论模型 5.1.3 处理死锁的策略 5.1.4 请求模型 5.1.5 资源和进程模型 5.1.6 死锁条件 5.2 死锁预防 5.3 一个死锁预防的例子:分布式数据库 系统 5.4 死锁避免 5.5 一个死锁避免的例子:多机器人的 灵活装配单元 5.6 死锁检测和恢复 5.6.1 集中式方法 5.6.2 分布式方法 5.6.3 等级式方法 5.7 死锁检测和恢复的例子 5.7.1 AND模型下的Chandy,Misra和Hass 算法 5.7.2 AND模型下的Mitchell和Merritt 算法 5.7.3 OR模型下的Chandy,Misra和Hass 算法 第6章 分布式路由算法 6.1 导论 6.1.1 拓扑 6.1.2 交换 6.1.3 通信类型 6.1.4 路由 6.1.5 路由函数 6.2 一般类型的最短路径路由 6.2.1 Dijkstra集中式算法 6.2.2 Ford的分布式算法 6.2.3 ARPAnet的路由策略 6.3 特殊类型网络中的单播 6.3.1 双向环 6.3.2 网格和圆环 6.3.3 超立方 6.4 特殊类型网络中的广播 6.4.1 环 6.4.2 2维网格和圆环 6.4.3 超立方 6.5 特殊类型网络中的组播 6.5.1 一般方法 6.5.2 基于路径的方法 6.5.3 基于树的方法 第7章 自适应、无死锁和容错路由 7.1 虚信道和虚网络 7.2 完全自适应和无死锁路由 7.2.1 虚信道类 7.2.2 逃逸信道 7.3 部分自适应和无死锁路由 7.4 容错单播:一般方法 7.5 2维网格和圆环中的容错单播 7.5.1 基于局部信息的路由 7.5.2 基于有限全局信息的路由 7.5.3 基于其他故障模型的路由 7.6 超立方中的容错单播 7.6.1 基于局部信息的模型 7.6.2 基于有限全局信息的模型:安全 等级 7.6.3 基于扩展安全等级模型的路由: 安全向量 7.7 容错广播 7.7.1 一般方法 7.7.2 使用全局信息的广播 7.7.3 使用安全等级进行广播 7.8 容错组播 7.8.1 一般方法 7.8.2 基于路径的路由 7.8.3 使用安全等级在超立方中进行组播 第8章 分布式系统的可靠性 8.1 基本模型 8.2 容错系统设计的构件模块 8.2.1 稳定存储器 8.2.2 故障-停止处理器 8.2.3 原子操作 8.3 节点故障的处理 8.3.1 向后式恢复 8.3.2 前卷式恢复 8.4 向后恢复中的问题 8.4.1 检查点的存储 8.4.2 检查点方法 8.5 处理拜占庭式故障 8.5.1 同步系统中的一致协议 8.5.2 对一个发送者的一致 8.5.3 对多个发送者的一致 8.5.4 不同模型下的一致 8.5.5 对验证消息的一致 8.6 处理通信故障 8.7 处理软件故障 第9章 静态负载分配 9.1 负载分配的分类 9.2 静态负载分配 9.2.1 处理器互连 9.2.2 任务划分 9.2.3 任务分配 9.3 不同调度模型概述 9.4 基于任务优先图的任务调度 9.5 案例学习:两种最优调度算法 9.6 基于任务相互关系图的任务调度 9.7 案例学习:域划分 9.8 使用其他模型和目标的调度 9.8.1 网络流量技术:有不同处理器能力的 任务相互关系图 9.8.2 速率单调优先调度和期限驱动调度: 带实时限制的定期任务 9.8.3 通过任务复制实现故障安全调度: 树结构的任务优先图 9.9 未来的研究方向 第10章 动态负载分配 10.1 动态负载分配 10.1.1 动态负载分配的组成要素 10.1.2 动态负载分配算法 10.2 负载平衡设计决策 10.2.1 静态算法对动态算法 10.2.2 多样化信息策略 10.2.3 集中控制算法和分散控制算法 10.2.4 移植启动策略 10.2.5 资源复制 10.2.6 进程分类 10.2.7 操作系统和独立任务启动策略 10.2.8 开环控制和闭环控制 10.2.9 使用硬件和使用软件 10.3 移植策略:发送者启动和接收者启动 10.4 负载平衡使用的参数 10.4.1 系统大小 10.4.2 系统负载 10.4.3 系统交通强度 10.4.4 移植阈值 10.4.5 任务大小 10.4.6 管理成本 10.4.7 响应时间 10.4.8 负载平衡视界 10.4.9 资源要求 10.5 其他相关因素 10.5.1 编码文件和数据文件 10.5.2 系统稳定性 10.5.3 系统体系结构 10.6 负载平衡算法实例 10.6.1 直接算法 10.6.2 最近邻居算法:扩散 10.6.3 最近邻居算法:梯度 10.6.4 最近邻居算法:维交换 10.7 案例学习:超立方体多计算机上的 负载平衡 10.8 未来的研究方向 第11章 分布式数据管理 11.1 基本概念 11.2 可串行性理论 11.3 并发控制 11.3.1 基于锁的并发控制 11.3.2 基于时戳的并发控制 11.3.3 乐观的并发控制 11.4 复制和一致性管理 11.4.1 主站点方法 11.4.2 活动复制 11.4.3 选举协议 11.4.4 网络划分的乐观方法:版本号 向量 11.4.5 网络分割的悲观方法:动态 选举 11.5 分布式可靠性协议 第12章 分布式系统的应用 12.1 分布式操作系统 12.1.1 服务器结构 12.1.2 八种服务类型 12.1.3 基于微内核的系统 12.2 分布式文件系统 12.2.1 文件存取模型 12.2.2 文件共享语义 12.2.3 文件系统合并 12.2.4 保护 12.2.5 命名和名字服务 12.2.6 加密 12.2.7 缓存 12.3 分布式共享内存 12.3.1 内存相关性问题 12.3.2 Stumm和Zhou的分类 12.3.3 Li和Hudak的分类 12.4 分布式数据库系统 12.5 异型处理 12.6 分布式系统的未来研究方向 附录 DCDL中的通用符号列表
2019-12-21 19:40:10 29.64MB 分布式系统设计 jie wu著 高传善
1
北京航空航天大学出版社 嵌入式系统设计 (美)瓦伊德,(美)吉瓦尔吉斯 著,骆丽 译 第1章 绪论 1.1 嵌入式系统综述 1.2 设计上的挑战——设计指标的最佳化 1.2.1 常用设计指标 1.2.2 上市时间 1.2.3 NRE与单位成本 1.2.4 性能 1.3 处理器技术 1.3.1 通用处理器——软件 1.3.2 单用途处理器——硬件 1.3.3 专用处理器 1.4 IC技术 1.4.1 全定制/VLSI 1.4.2 半定制ASIC(逻辑门阵列和标准单元) 1.4.3 PLD 1.4.4 发展趋势 1.5 设计技术 1.5.1 编译/综合 1.5.2 库/IP 1.5.3 测试/验证 1.5.4 其他提高效率的方法 1.5.5 发展趋势 1.6 设计方法的取舍 1.7 小结与本书概要 1.8 参考文献 1.9 习题 第2章 定制单用途处理器——硬件 2.1 引言 2.2 组合逻辑 2.2.1 晶体管与逻辑门 2.2.2 基本组合逻辑设计 2.2.3 RTL组合元件 2.3 时序逻辑 2.3.1 触发器 2.3.2 RTL时序元件 2.3.3 时序逻辑设计 2.4 定制单用途处理器的设计 2.5 RTL定制单用途处理器设计 2.6 定制单用途处理器的最佳化 2.6.1 原始程序的最佳化 2.6.2 FSMD的最佳化 2.6.3 数据路径的最佳化 2.6.4 FSM的最佳化 2.7 小结 2.8 参考文献 2.9 习题 第3章 通用处理器——软件 3.1 引言 3.2 基本结构 3.2.1 数据路径 3.2.2 控制单元 3.2.3 存储器 3.3 运算 3.3.1 指令执行 3.3.2 流水线技术 3.3.3 超标量和超长指令字结构 3.4 程序员的观点 3.4.1 指令集 3.4.2 程序和数据存储器空间 3.4.3 寄存器 3.4.4 输入/输出 3.4.5 中断 3.4.6 实例:设备驱动程序的汇编语言编程 3.4.7 操作系统 3.5 开发环境 3.5.1 设计流程和工具 3.5.2 实例:一个简单处理器的指令集仿真程序 3.5.3 测试和调试 3.6 专用指令集处理器 3.6.1 单片机 3.6.2 数字信号处理器 3.6.3 较不通用的ASIP环境 3.7 微处理器的选择 3.8 通用处理器设计 3.9 小结 3.10 参考文献 3.11 习题 第4章 标准单用途处理器——外部设备 第5章 存储器 第6章 接口 第7章 数码相机实例 第8章 状态机与并发进程模型 第9章 控制系统 第10章 IC技术 第11章 设计技术 附录A 相关资源 附录B 有关术语的中英文对照表
1