CNN-LSTM-Attention基于卷积-长短期记忆神经网络结合注意力机制的数据分类预测 Matlab语言 程序已调试好,无需更改代码直接替换Excel即可运行 1.多特征输入,LSTM也可以换成GRU、BiLSTM,Matlab版本要在2020B及以上。 2.特点: [1]卷积神经网络 (CNN):捕捉数据中的局部模式和特征。 [2]长短期记忆网络 (LSTM):处理数据捕捉长期依赖关系。 [3]注意力机制:为模型提供了对关键信息的聚焦能力,从而提高预测的准确度。 3.直接替换Excel数据即可用,注释清晰,适合新手小白 4.附赠测试数据,输入格式如图3所示,可直接运行 5.仅包含模型代码 6.模型只是提供一个衡量数据集精度的方法,因此无法保证替换数据就一定得到您满意的结果
2024-09-12 10:58:49 171KB lstm 神经网络 matlab
1
基于神经网络的一阶倒立摆控制 Inverted-pendulum 基于神经网络的一阶倒立摆控制 介绍 两个模型均采用传统LQR控制器控制一阶倒立摆,为了体会学习神经网络的数据拟合能力,使用BP、RBF神经网络代替LQR控制器,实现对一阶倒立摆的控制效果 模型来自万能的Github,个人部分:将神经网络代替LQR控制器,实现控制效果 Modle1 Modle1基于Matlab的SimMechanics工具箱,建立一阶倒立摆的物理仿真模型,模拟真实倒立摆的受力情况 Initial 运行“dlb_DataFile.m”文件,为仿真模型提供初始化参数设置 运行“dlb_fangzhen.slx”文件(已调参),采集LQR控制器对应的“4输入-1输出数据” 4输入:位置、速度、角度、角速度 1输出:加速度 Process 将保存在工作区的数据以“.mat”的文件格式保存到“File”文件夹 运行“BP.m”代码,拟合训练BP神经网络,并生成可供Simulink调用的网络模块 替换原有的LQR控制器,再次运行文件,观看倒立摆的摆动幅度、稳定时间 Modle2 Modle2基于纯数学模型,
2024-09-10 09:16:49 6.12MB 神经网络 matlab 一阶倒立摆
1
1. Matlab实现径向基神经网络的时间序列预测(完整源码和数据) 2. 单列数据,递归预测-自回归,时间序列预测 3. 评价指标包括:R2、MAE、MSE、RMSE 4. 包括拟合效果图和散点图 5. Excel数据,暂无版本限制,推荐2018B及以上版本
2024-08-02 06:30:00 25KB 机器学习 神经网络 Matlab 时间序列
1
GRNN广义回归神经网络MATLAB代码
2024-07-01 20:46:37 4KB matlab 神经网络
1
## 1.前馈神经网络 一种单向多层的网络结构,信息从输入层开始,逐层向一个方向传递,一直到输出层结束。前馈是指输出入方向是前向,此过程不调整权值。神经元之间不存在跨层连接、同层连接,输入层用于数据的输入,隐含层与输出层神经元对数据进行加工。 ## 2.反向传播算法 (英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。 ## 3.BP神经网络: 也是前馈神经网络,只是它的参数权重值是由反向传播学习算法调整的。 ## 4.总结: 前馈描述的是网络的结构,指的是网络的信息流是单向的,不会构成环路。它是和“递归网络”(RNN)相对的概念;BP算法是一类训练方法,可以应用于FFNN,也可以应用于RNN,而且BP也并不是唯一的训练方法,其
2024-07-01 20:45:29 17KB 神经网络 matlab
1
直接替换数据即可使用,不需要任何基础 代码注释非常详细,可供学习 本代码为优质代码,丰富齐全,包含内容有: (1)分节设置,注释非常详细,可供学习。 (2)设置隐含层的寻优过程,根据输入自动确定隐含层节点范围,并进行误差寻优,最终获得最佳隐含层节点,减少实验过程。 (3)作图精细,图像结果齐全。 (4)各误差结果指标齐全,自动计算误差平方和SSE、平均绝对误差MAE、均方误差MSE、均方根误差RMSE、平均绝对百分比误差MAPE、预测准确率、相关系数R等指标,结果种类丰富齐全。 (5)最终打印显示测试集的结果。
2024-07-01 19:22:27 50KB 神经网络 matlab
1
基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP
2024-06-29 15:18:30 26KB 神经网络 matlab 时间序列预测 PSO-BP
1
1. Matlab实现BP神经网络的数据分类预测(完整源码和数据) 2. 多变量输入,单变量输出(类别),数据分类预测 3. 评价指标包括:准确率 和 混淆矩阵 4. 包括拟合效果图 和 混淆矩阵 5. Excel数据,要求 Matlab 2018B及以上版本
2024-06-19 17:35:12 73KB 机器学习 神经网络 Matlab 分类算法
1
基于鲸鱼算法优化BP神经网络(WOA-BP)的时间序列预测,matlab代码。 模型评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-06-04 19:58:40 27KB 神经网络 matlab
1
BP神经网络结构:2-4-1,具体参数可自行调整 (输入神经元个数:2,隐含层层数:1,隐含层神经元个数:4,输出神经元个数:1) 采用粒子群优化算法(PSO)对BP神经网络模型的权重和阈值进行优化 测试函数:y=x_1^2+x_2^2 https://blog.csdn.net/weixin_43470383/article/details/132240745
2024-05-29 10:26:37 93KB 神经网络 matlab BP PSO
1