附数据;使用BP神经网络进行电力系统短期负荷预测 完整程序
2022-05-07 09:04:50 5.32MB 神经网络 源码软件 文档资料 人工智能
电力系统短期电力负荷预测数据集(时间间隔1h,4.8w多条数据)2015-2020 特征包括:天气变量,如气温、相对湿度、降水量和风速。
2022-04-22 17:05:41 22.29MB 电力系统 短期负荷预测 电气工程
基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预测方法 基于CNN-LSTM混合神经网络模型的短期负荷预
2022-04-21 21:05:27 1.22MB 神经网络 cnn lstm 深度学习
特征包括:天气变量,如气温、相对湿度、降水量和风速。数据集来源CND
2022-04-19 19:07:54 47.59MB 电力系统短期负荷预测
电力系统短期负荷预测:输入每小时ENTSO-E负载,输入ENTSO-E每小时负荷、天气和风度 Models NRMSE MAE MAPE HMM 0.255 1058.75 0.148
电力系统短期负荷预测:输入每小时ENTSO-E负载,输入ENTSO-E每小时负荷、天气和风度 Models NRMSE MAE MAPE HMM 0.255 1058.75 0.148 ARIMA 0.198 807.97 0.108 DWT-ARIMA 0.0805 565.91 0.0876 SVR 0.0409 146.80 0.0210 GPR 0.0435 162.34 0.0232 FFNN 0.0504 200.59 0.0282 Clustering 0.0684 271.51 0.0384 LSTM 0.0451 167.85 0.0239 Seq2Seq 0.0424 153.74 0.0219 DBN 0.0434 162.38 0.0232 RFR 0.0411 154.94 0.0221 GDRT 0.0424 157.87 0.0225 XGBoost 0.0418 154.14 0.0219
2022-04-06 09:42:31 28.34MB 电力系统负荷预测
为提高短期负荷预测精度,针对传统的单一负荷预测模型精度低以及常规智能算法在解决高维、多模复杂问题时容易陷入局部最优的问题进行了研究,提出了一种结合混沌纵横交叉的粒子群算法(CC-PSO)优化极限学习机(ELM)的短期负荷预测模型。ELM的泛化能力与其输入权值和隐含层偏置密切相关,采用结合混沌纵横交叉的粒子群算法优化ELM的输入权值与隐含层偏置,提高了ELM的泛化能力和预测精度。选择广东某地区实际电网负荷数据进行分析,研究结果表明,相对于BP神经网络和支持向量机,ELM具有更高的泛化能力和预测精度;CC-PSO相对于粒子群和遗传算法具有更高的全局搜索能力,CC-PSO-ELM模型具有较高的负荷预测精度。
1
为了克服BP的这些缺陷,本人对算法做了一些改进确定连接权修正值的计算过程,实际上是优化计算的梯度下降法。当能量公式对应的误差曲面为窄长型时,这种算法在谷的两壁跳来跳去,影响了网络的收敛速度,对算法最普通的改进方法是增加附加动量项。利用附加动量项可以起到平滑梯度方向的剧烈变化,增加算法的稳定性。在具体计算中,学习率η越大,学习速度会越快,但过大时会引起震荡效应;而动量因子α取得过大可能导致发散,过小则收敛速度过慢。并为了解决BP易于陷于极小值现象,用人工遗传算法来优化BP网络的初始权值。遗传算法是根据生物进化思想而启发得出的一种全局优化算法,在本质上是一种不依赖具体问题的直接搜索方法,它仅需给出目标函数的描述,从一组随机产生的称为“种群(population)”的初始解开始,从全局空间出发搜索问题的最优解。由于遗传算法善于全局搜索,且能以较大的概率找到全局最优解,故用它来完成前期搜索能较好的克服BP算法的局部极小的缺陷。将GA和BP结合起来,形成GA-BP混合训练算法,以GA优化BP网络的初始权值和阈值,再由BP算法按负梯度方向修正网络权值及阈值,进行网络训练。这种方法避免了BP网络易陷入局部极小问题,达到优化网络目的,更能精确的实现城市用电量预测。 实例讲解
2022-01-14 16:35:36 128KB MATLAB
1
短期负荷预测为实时电力市场运行提供重要依据, 预测准确度的提升对于揭示负荷变化的不确定性以及日前 预测偏差具有重要意义。基于电力系统中含有的丰富大数据 资源,提出了一种针对区域级负荷的深度长短时记忆网络超 短期预测方法,该方法包括输入数据的预处理、深度长短时 记忆(long short-term memory,LSTM)网络的构建以及模型 的训练和超参数的寻找等步骤。其中采用随机搜索的方法寻 找最优超参数,并在该超参数下选择泛化能力最优的模型,与前沿机器学习预测算法进行对比。实验结果证实,深度 LSTM 网络可以取得更好的预测效果,适合于离线训练实时 预测。此外,通过对隐藏层激活向量的可视化
1
目前常用的负荷预测方法主要是通过负荷自身和相关关系的研究建立模型,提出一种新的负荷预测思路,即从传统频域预测方法的误差入手,通过研究虚拟预测误差的历史分布规律进行误差预测,然后对传统方法得到的预测结果进行修正。建立负荷预测的误差修正模型,并通过算例验证了误差修正的短期负荷预测方法的可行性和实用性,达到了提高短期负荷预测精度的目的。
1