基于Keras的猫狗识别分类是计算机视觉领域中的图像分类问题,图像分类的过程十分的明确,Kaggle竞赛官网给出的数据集中训练集是已经标记的数据集,提取特征,训练得到分类器。
本实验中,猫和狗的图像数量是相同的,所以是一个平衡的二分类问题,本实验使用12500张猫和12500张狗的图像作为数据预处理的输入,对图像尺寸异常、图像颜色异常和图像标签标注异常进行了处理。其中对于图像标签标注异常图像,采用了创新方法,首先使用预处理模型来进行排查,然后用表现最佳的预处理模型来对训练集的猫和狗的图片进行预测,由于猫狗的种类不平等,故采用分别微调top参数的方法,筛选出标签标注异常的图像,最终设置的参数为:猫top=35,狗top=10。通过这三步异常图像处理,获得新的训练集24964张图像,其中猫图像12482张,狗图像12482张,猫狗图片在数量上还是均衡的,接着将训练集图像重新命名排序,使所有图像的序号是连续的,方便后续处理。数据预处理过后,处理了各种异常图像,训练出一个模型,使用CNN技术,基于AlexNet的5个卷积层和3个全连接层建立了一个简单模型,对给定的猫和狗的图像进行分类。