机器学习数学基础:线性代数+微积分+概率统计+优化算法 机器学习作为现代科技的璀璨明珠,正在逐渐改变我们的生活。而在这背后,数学扮演着至关重要的角色。线性代数、微积分、概率统计和优化算法,这四大数学领域为机器学习提供了坚实的理论基础。 线性代数是机器学习中的基础语言。矩阵和向量作为线性代数中的核心概念,是数据表示和计算的基础。在机器学习中,我们经常需要将数据转化为矩阵形式,通过矩阵运算提取数据的特征特征提取是机器学习模型训练的关键步骤,而线性代数则为我们提供了高效处理数据的工具。 微积分则是机器学习模型优化的得力助手。在机器学习中,我们通常需要找到一种模型,使得它在给定数据集上的性能达到最优。这就需要我们对模型进行求导,分析模型参数对性能的影响,进而调整参数以优化模型。微积分中的导数概念为我们提供了分析模型性能变化的方法,帮助我们找到最优的模型参数。 概率统计则是机器学习数据处理和模型评估的基石。在机器学习中,数据往往带有噪声和不确定性,而概率统计可以帮助我们评估数据的分布和特征,进而构建更加稳健的模型。同时,概率统计也为我们提供了模型评估的方法,通过计算模型的准确率、召回率 ### 机器学习数学基础详解 #### 一、线性代数基础 **1.1 向量和矩阵** - **1.1.1 标量、向量、矩阵、张量之间的联系** 标量、向量、矩阵和张量是线性代数中的基本概念,它们之间存在着紧密的联系。 - **标量(Scalar)**:一个单独的数字,没有方向。 - **向量(Vector)**:一组有序排列的数字,通常用来表示方向和大小。 - **矩阵(Matrix)**:一个二维数组,由行和列组成的数据结构。 - **张量(Tensor)**:一个更高维度的数组,它可以是标量(0维)、向量(1维)、矩阵(2维)或更高维度的数组。 **联系**:标量可以视为0维张量;向量是一维张量;矩阵是二维张量;更高维度的数组称为张量。 - **1.1.2 张量与矩阵的区别** - **代数角度**:矩阵是二维张量,而更高维度的张量则包含了更复杂的数据结构。 - **几何角度**:矩阵和向量都是不变的几何量,不随参照系的变化而变化。张量也可以用矩阵形式来表达,但其可以扩展到更高的维度。 - **1.1.3 矩阵和向量相乘结果** 当一个矩阵与一个向量相乘时,可以理解为矩阵的每一行与向量相乘的结果构成新的向量。 - 例如,如果有一个$m \times n$的矩阵$A$与一个$n \times 1$的向量$x$相乘,结果将是一个$m \times 1$的向量$y$,其中每个元素$y_i = \sum_{j=1}^{n} a_{ij}x_j$。 - **1.1.4 向量和矩阵的范数归纳** 向量的范数是衡量向量大小的一种标准。 - **向量的1范数**:向量各分量的绝对值之和。 - 对于向量$\vec{x} = (x_1, x_2, ..., x_n)$,其1范数定义为$||\vec{x}||_1 = |x_1| + |x_2| + ... + |x_n|$。 - **向量的2范数**:也称为欧几里得范数,是各分量平方和的开方。 - $||\vec{x}||_2 = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$。 - **向量的无穷范数**:向量各分量的最大绝对值。 - $||\vec{x}||_\infty = \max(|x_1|, |x_2|, ..., |x_n|)$。 **1.2 导数和偏导数** - **1.2.1 导数偏导计算** 导数用于描述函数在某一点处的变化率,而偏导数则是多元函数关于其中一个自变量的变化率。 - **1.2.2 导数和偏导数有什么区别?** - **导数**:对于单一自变量的函数$f(x)$,导数$f'(x)$描述了该函数在$x$点处的切线斜率。 - **偏导数**:对于多变量函数$f(x_1, x_2, ..., x_n)$,偏导数$\frac{\partial f}{\partial x_i}$描述了当保持其他变量不变时,$f$关于$x_i$的变化率。 **1.3 特征值和特征向量** - **1.3.1 特征值分解与特征向量** 特征值和特征向量是线性代数中的重要概念,用于理解和简化矩阵。 - **特征值**:如果存在非零向量$\vec{v}$使得$A\vec{v} = \lambda\vec{v}$,那么$\lambda$就是矩阵$A$的一个特征值。 - **特征向量**:满足上述等式的非零向量$\vec{v}$。 - **1.3.2 奇异值与特征值的关系** - **奇异值**:对于任何矩阵$A$,其奇异值是$A^\top A$(或$AA^\top$)的特征值的平方根。 - **关系**:奇异值和特征值在特定情况下相同,尤其是在正交矩阵和对称矩阵中。 #### 二、微积分基础 - **1.2 导数和偏导数**(已在上文提到) - **1.3 特征值和特征向量**(已在上文提到) #### 三、概率统计基础 **1.4 概率分布与随机变量** - **1.4.1 机器学习为什么要使用概率** 在机器学习中,概率用于描述数据的不确定性,并提供了一种量化方式来预测未来事件的可能性。 - **1.4.2 变量与随机变量有什么区别** - **变量**:可以取多种不同值的量。 - **随机变量**:变量的一种特殊类型,其值是根据某个概率分布随机确定的。 - **1.4.3 随机变量与概率分布的联系** - 随机变量的每个可能值都对应一个概率,这些概率构成了随机变量的概率分布。 - **1.4.4 离散型随机变量和概率质量函数** - **离散型随机变量**:只能取有限个或可数无限个值的随机变量。 - **概率质量函数**:描述离散型随机变量各个值的概率。 - **1.4.5 连续型随机变量和概率密度函数** - **连续型随机变量**:可以取区间内的任意值的随机变量。 - **概率密度函数**:描述连续型随机变量在某一区间的概率密度。 - **1.4.6 举例理解条件概率** - 条件概率$P(A|B)$表示在事件$B$已经发生的条件下,事件$A$发生的概率。 - 例如,假设在一个班级中,$P(\text{女生}) = 0.5$,$P(\text{女生|戴眼镜}) = 0.6$,意味着在戴眼镜的学生中,60%是女生。 - **1.4.7 联合概率与边缘概率联系区别** - **联合概率**:两个事件同时发生的概率。 - **边缘概率**:单个事件发生的概率。 - **联系**:联合概率可以通过边缘概率和条件概率计算得出。 - **1.4.8 条件概率的链式法则** - 条件概率的链式法则描述了如何通过一系列条件概率来计算联合概率。 - 例如,$P(A,B,C) = P(C|A,B)P(B|A)P(A)$。 - **1.4.9 独立性和条件独立性** - **独立性**:两个事件$A$和$B$独立,如果$P(A|B) = P(A)$且$P(B|A) = P(B)$。 - **条件独立性**:事件$A$和$B$在已知事件$C$的情况下条件独立,如果$P(A|B,C) = P(A|C)$。 **1.5 常见概率分布** - **1.5.1 Bernoulli分布** - 描述只有两种可能结果的随机试验(如成功或失败)的概率分布。 - 参数$p$表示成功的概率,失败的概率为$1-p$。 - **1.5.2 高斯分布** - 又称正态分布,是一种非常常见的连续概率分布。 - 参数$\mu$代表均值,$\sigma^2$代表方差。 - **1.5.3 何时采用正态分布** - 正态分布广泛应用于自然和社会科学领域,特别是在中心极限定理的支持下,很多随机变量可以近似为正态分布。 - **1.5.4 指数分布** - 描述事件发生的时间间隔的分布。 - 参数$\lambda$表示事件发生的平均频率。 - **1.5.5 Laplace 分布** - 也是一种连续概率分布,具有比高斯分布更重的尾部。 - 参数$\mu$代表均值,$b$代表尺度参数。 - **1.5.6 Dirac分布和经验分布** - **Dirac分布**:一个概率质量集中在单个点的分布。 - **经验分布**:基于观测数据的分布,反映了数据的真实概率分布情况。 **1.6 期望、方差、协方差、相关系数** - **1.6.1 期望** - 期望是对随机变量取值的加权平均。 - 对于离散型随机变量,期望定义为$E[X] = \sum x_i p(x_i)$。 - **1.6.2 方差** - 方差衡量随机变量与其期望值之间的偏差程度。 - 定义为$Var(X) = E[(X-E[X])^2]$。 - **1.6.3 协方差** - 协方差描述两个随机变量之间的线性相关性。 - 定义为$Cov(X,Y) = E[(X-E[X])(Y-E[Y])]$。 - **1.6.4 相关系数** - 相关系数是标准化后的协方差,用于衡量两个变量的相关强度。 - 定义为$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$,其中$\sigma_X$和$\sigma_Y$分别是$X$和$Y$的标准差。 通过以上详细的介绍,我们可以看到,线性代数、微积分、概率统计和优化算法在机器学习中的应用极为广泛,它们为机器学习提供了坚实的数学基础。掌握这些基础知识对于深入理解机器学习算法至关重要。
2024-08-23 11:30:23 852KB 机器学习 线性代数
1
【基于matlab的手势识别系统】是一个利用计算机视觉和机器学习技术实现的创新性应用,主要目的是通过识别特定的手势来执行相应的数字命令。在这个系统中,手势被映射为1到10的数字,使得用户可以通过简单的手部动作与设备进行交互。以下是关于这个系统的几个关键知识点: 1. **MATLAB平台**:MATLAB是一种强大的数学计算软件,广泛用于信号处理、图像处理、机器学习等多个领域。在这个项目中,MATLAB被用作开发环境,提供了丰富的图像处理工具箱和机器学习库,简化了算法实现和系统集成的过程。 2. **新手势录入**:系统允许用户录入新的手势样本,这在实际应用中是非常实用的,因为它可以适应不同用户的手势习惯,提高系统的个性化和适应性。录入过程可能涉及到手势捕捉、预处理和特征提取等步骤。 3. **PCA(主成分分析)**:PCA是一种常见的特征提取方法,用于降维和数据可视化。在手势识别中,PCA可以用来减少图像的复杂度,提取最能代表手势特征的主成分,同时减少计算负担。 4. **特征提取**:这是图像识别中的关键步骤,包括色彩特征、纹理特征、形状特征等。对于手势识别,可能使用霍夫变换检测轮廓,或者利用灰度共生矩阵分析纹理信息,以区分不同的手势。 5. **机器学习算法**:系统采用了机器学习算法进行训练和识别。可能使用的算法包括SVM(支持向量机)、KNN(K近邻)、神经网络等。这些算法通过对大量手势样本的学习,构建分类模型,以区分不同的手势。 6. **训练迭代**:在机器学习过程中,迭代训练是提升模型性能的关键。通过反复迭代,模型可以逐步优化,提高对新样本的识别准确率。 7. **增加样本数量**:为了提高识别的准确性,系统允许增加更多的手势样本。增加样本可以增强模型的泛化能力,使其在面对未见过的或变化的手势时仍能做出正确的判断。 8. **系统自主编程**:描述中提到系统是自主编程的,这意味着所有的算法实现和界面设计都是定制的,没有依赖现成的解决方案,这体现了开发者在图像处理和机器学习领域的深厚技术基础。 9. **文件列表解析**:"基于的手势识别系统支.html"可能是系统的介绍或使用手册,提供操作指南;"1.jpg"和"2.jpg"可能是手势样本图片,用于训练或演示;"基于的手势识别.txt"可能包含了源代码片段、算法描述或其他相关文档。 这个基于MATLAB的手势识别系统结合了计算机视觉和机器学习的先进技术,为用户提供了一种直观、便捷的人机交互方式。它展示了MATLAB在工程实践中的强大功能,以及在人工智能领域中的广泛应用。
2024-08-10 20:46:20 505KB matlab 机器学习
1
机器学习基础:数学理论+算法模型+数据处理+应用实践 机器学习,作为人工智能领域的重要分支,正在逐渐改变我们生活和工作的方式。要想深入理解和有效应用机器学习技术,必须扎实掌握其基础知识。这其中,数学理论、算法模型、数据处理和应用实践是四大不可或缺的要素。 数学理论是机器学习的基石。统计概率、线性代数、微积分和优化理论等数学知识,为机器学习提供了严密的逻辑基础和数学工具。掌握这些理论知识,可以帮助我们更好地理解机器学习算法的原理和运行机制,从而更有效地应用它们解决实际问题。 算法模型是机器学习的核心。分类算法、聚类算法、回归算法和降维算法等,都是机器学习中常用的算法模型。精通这些算法的原理和应用场景,可以帮助我们根据具体问题的特点选择合适的算法,从而构建出高效、准确的机器学习模型。 数据处理是机器学习的重要环节。在机器学习项目中,数据的质量和预处理方式往往对模型的性能产生重要影响。因此,我们需要掌握特征提取、数据清洗、数据变换和特征选择等数据处理技术,以提高数据的质量和模型的性能。 应用实践是检验机器学习基础知识和技能的试金石。通过参与实际项目,我们可以将理论知识与实际应用相结 ### 机器学习基础知识点详解 #### 一、数学理论 **1.1 统计概率** - **定义**: 统计概率是研究随机事件发生可能性的一门学科。 - **重要性**: 在机器学习中,统计概率帮助我们理解数据分布、模型参数的概率意义,以及如何从样本数据中估计这些参数。 - **应用**: 最大似然估计、贝叶斯估计等。 **1.2 线性代数** - **定义**: 研究向量空间和线性映射的数学分支。 - **重要性**: 用于表示和操作多维数据结构,如矩阵运算、特征值和特征向量等。 - **应用**: 数据集的表示、线性变换、特征分解等。 **1.3 微积分** - **定义**: 研究连续变化的数学分支,包括微分和积分两大部分。 - **重要性**: 微积分是优化算法的基础,帮助我们找到函数的最大值或最小值。 - **应用**: 梯度下降算法、最优化问题求解等。 **1.4 优化理论** - **定义**: 研究如何寻找函数的极值。 - **重要性**: 在机器学习中,优化理论用于调整模型参数,以最小化误差函数或最大化目标函数。 - **应用**: 梯度下降、牛顿法、拟牛顿法等。 #### 二、算法模型 **2.1 分类算法** - **定义**: 将输入数据分配到特定类别的算法。 - **例子**: 逻辑回归、决策树、支持向量机等。 - **评估**: 精确率、召回率、F1分数等指标。 **2.2 聚类算法** - **定义**: 将相似的数据对象分组在一起的方法。 - **例子**: K-Means、层次聚类、DBSCAN等。 - **评估**: 轮廓系数、Calinski-Harabasz指数等。 **2.3 回归算法** - **定义**: 预测连续值输出的算法。 - **例子**: 线性回归、岭回归、Lasso回归等。 - **评估**: 均方误差、R²分数等。 **2.4 降维算法** - **定义**: 减少数据特征数量的技术。 - **例子**: 主成分分析(PCA)、线性判别分析(LDA)等。 - **评估**: 重构误差、解释方差比等。 #### 三、数据处理 **3.1 特征提取** - **定义**: 从原始数据中提取有意义的信息。 - **例子**: 文本中的词频-逆文档频率(TF-IDF)、图像中的边缘检测等。 - **重要性**: 提高模型的预测性能。 **3.2 数据清洗** - **定义**: 清除数据中的噪声、不一致性和缺失值。 - **例子**: 使用均值、中位数填充缺失值,异常值检测等。 - **重要性**: 确保数据质量,减少模型训练时的偏差。 **3.3 数据变换** - **定义**: 转换数据格式,使其符合算法要求。 - **例子**: 归一化、标准化等。 - **重要性**: 加速模型收敛,提高预测准确性。 **3.4 特征选择** - **定义**: 从大量特征中挑选出对目标变量贡献最大的特征子集。 - **例子**: 递归特征消除(RFE)、基于模型的选择等。 - **重要性**: 减少模型复杂度,防止过拟合。 #### 四、应用实践 **4.1 实际项目** - **定义**: 将理论知识应用于解决实际问题的过程。 - **例子**: 推荐系统、图像识别、自然语言处理等。 - **重要性**: 验证理论的有效性,积累实践经验。 **4.2 模型评估** - **定义**: 测量模型性能的过程。 - **例子**: 交叉验证、混淆矩阵、ROC曲线等。 - **重要性**: 选择最佳模型,改进模型性能。 **4.3 过拟合与欠拟合** - **定义**: 模型过于复杂或简单导致的问题。 - **解决方案**: 正则化、增加数据量、特征选择等。 - **重要性**: 平衡模型复杂度与泛化能力。 **4.4 模型调参** - **定义**: 调整模型参数以获得更好的性能。 - **例子**: 网格搜索、随机搜索等。 - **重要性**: 提升模型效果,实现最佳配置。 通过以上对机器学习基础知识的详细介绍,我们可以看出,机器学习不仅仅是一系列算法的应用,更是建立在深厚数学理论基础上的科学。掌握这些理论知识和技术,能够让我们更加深刻地理解机器学习的工作原理,并在实践中取得更好的成果。
2024-08-10 19:39:52 8.96MB 机器学习 聚类
1
阐述了采场围岩三维力学特征及其影响因素,在分析冲击地压发生机理的基础上,初步探讨了综采采场围岩应力壳演化特征与发生冲击地压的联系,认为随开采特点及影响因素的改变,采场围岩应力壳的演化及发展为冲击地压的孕育发生创造了力学及能量条件,强调充分认识采场围岩应力壳的演化特征对防治冲击地压等煤矿动力灾害具有重要意义。
2024-07-16 10:53:06 838KB 采场围岩 冲击地压 动力灾害
1
采用相似条件采场类比、现场实测和数值分析综合研究方法,研究了厚冲积层薄基岩采场围岩三维力学特征,研究表明:厚冲积层薄基岩采场矿压显现与基采比密切相关,随着基采比增大,采场矿压趋于缓和。按基采比大小可将采场划分为"有板有壳"、"有板无壳"和"无板无壳"3种类型。"有板有壳"类型采场,应力壳为采场第1掩体,其下位的断裂带板(梁)结构为第2掩体,采场矿压显现缓和;"有板无壳"类型采场,断裂带板(梁)结构为采场惟一掩体,其上位无"应力壳"承载,板(梁)结构失稳后采场矿压显现剧烈;"无板无壳"类型采场,无板(梁)结构和"应力壳"的掩护,冲积层荷载直接传递在液压支架上,该类采场易发生压架事故。"无板无壳"类型采场的覆岩结构沿竖向划分为两带,即"垮落带"和"弯曲下沉带"。并对形成3种类型采场的力学机理进行分析。
2024-07-16 10:23:17 450KB 厚冲积层
1
开发环境:win10、Qt5.15.2 主要实现低功耗蓝牙BLE的基本功能:设备扫描、设备连接、发现服务、发现特征特征及描述符的读写等功能; BLE在蓝牙4.0版本以后的产物,该BLE调试助手在win10上测试可用,在win7上不支持;仅Qt5.14以上版本支持BLE开发。
2024-07-15 15:53:45 20KB windows
1
为研究综放开采沿空留巷围岩变形特征,以山西铺龙湾煤业有限公司4102综放工作面为工程背景,从理论层面分析了沿空留巷围岩大变形机理,发现4102综放工作面沿空留巷围岩发生大变形主要原因是基本顶关键块体断裂回转使留巷位置由低值应力区变为高值应力区,在此基础上采用FLAC3D软件对沿空留巷围岩应力分布规律及变形特征进行分析。结果表明:在支护初期巷旁支护体垂直应力为1. 5 MPa,巷道围岩水平位移极小,当基本顶发生断裂后,巷旁支护体垂直应力增加,最大达3. 22 MPa,此时的变形速率也达到最大,随着上覆岩层触矸,巷道围岩垂直应力及两帮变形速率也逐渐稳定。
2024-07-15 14:34:39 1.19MB 综放开采 沿空留巷 围岩变形 应力分布
1
针对矿物浮选过程中的一类回收率预测问题,提出了一种基于泡沫图像特征提取的预测算法。该算法采用最小二乘支持向量机(LSSVM)建立预测模型,通过施密特正交化对核矩阵进行简约,利用核偏最小二乘方法(KPLS)进行LSSVM参数辨识,以此构造具有稀疏性的LSSVM,有效地减小了算法的计算复杂度。为检验模型泛化及预测能力,为多个泡沫特征信息引入预测模型,采用泡沫图像特征提取方法提取泡沫颜色、速度、尺寸、承载量及破碎率特征。实验结果表明,该预测算法对浮选回收率具有良好预测效果。
2024-07-11 12:27:56 456KB
1
在使用深度学习模型研究遥感影像地物分类问题时,某些地物的遥感影像可用于训练的样本很少。同时,多样化的遥感影像获取方式产生了大量不同空间分辨率的多模态遥感影像。融合这些多模态遥感影像,弥补样本量少导致分类精度低的缺陷,是小样本的遥感影像高精度分类领域中亟待解决的问题。针对上述问题,提出了考虑两种空间分辨率遥感影像相关关系的融合分类方法。首先,使用两个并行的深度学习网络分别提取两种空间分辨率影像的高层特征;其次,将提取到的高层特征通过融合方法进行融合;最后,得到融合后的高层特征作为输入,训练整个融合分类模型。实验表明,不同融合策略的分类精度不同,本文提出的基于高层特征级别的融合策略可以有效提高分类精度。
2024-07-01 16:53:28 3.2MB 图像处理 深度学习
1
"多模态特征融合的遥感图像语义分割网络" 本文介绍了一种多模态特征融合的遥感图像语义分割网络,称为MMFNet。该网络能够融合 IRRG(Infrared、Red、Green)图像和 DSM(Digital Surface Model)图像,提取融合后的特征,并使用残差解码块(Residual Decoding Block, RDB)和复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块提取跳跃连接的多尺度特征。 MMFNet 网络的架构主要包含以下几个部分: 1. 编码器:使用双输入流的方式同时提取 IRRG 图像的光谱特征和 DSM 图像的高度特征。 2. 解码器:使用残差解码块(Residual Decoding Block, RDB)提取融合后的特征,并使用密集连接的方式加强特征的传播和复用。 3. 复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块:提取跳跃连接的多尺度特征。 实验结果表明,MMFNet 网络在国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的 Vaihingen 和 Potsdam 数据集上取得了 90.44%和 90.70%的全局精确度,相比较与 DeepLabV3+、OCRNet 等通用分割网络和 CEVO、UFMG_4 等同数据集专用分割网络具有更高的分割精确度。 本文的贡献在于: 1. 提出了多模态特征融合的遥感图像语义分割网络,能够融合 IRRG 图像和 DSM 图像,提高了遥感图像语义分割的精确度。 2. 引入了残差解码块(Residual Decoding Block, RDB)和复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块,提高了网络的表达能力和泛化能力。 本文提出了一个多模态特征融合的遥感图像语义分割网络,能够提高遥感图像语义分割的精确度和泛化能力,有助于国土资源规划、智慧城市等领域的应用。
2024-07-01 16:47:59 1.49MB
1