今日头条短视频数据爬取与预处理及数据分析(项目报告,源代码,演示视频)。使用用图形用户界面(GUI)。用户可以通过界面输入URL和爬取页面数量,并查看Top 10最受欢迎的视频详细信息。
2025-05-29 21:51:18 18.24MB 数据分析
1
在本项目中,"matlab爬取火车票信息.zip"是一个使用MATLAB编写的程序,其目的是演示如何从网络上抓取火车票的相关信息。MATLAB通常被用于数值计算、符号计算、数据可视化以及图像处理等领域,但通过扩展,也可以实现网络爬虫的功能。这个例子向我们展示了MATLAB在Web数据获取方面的应用。 "trainSearch.m"是主程序文件,它包含了编写爬虫的代码。MATLAB中的网络爬虫通常涉及URL操作、HTTP请求、HTML解析等步骤。在这个程序中,开发者可能首先定义了目标网页的URL,然后使用MATLAB的webread函数来发送GET请求并获取网页的HTML源码。接着,他们可能利用正则表达式或者HTML解析库(如HTMLLAB)来提取火车票信息,如车次、出发时间、到达时间、余票等关键数据。 "需要爬取的车次.xlsx"文件则可能是爬虫的目标数据清单,列出了开发者想要爬取的具体车次。在实际的爬虫项目中,这样的清单可以动态更新,以适应不同的查询需求。Excel文件通常包含结构化的数据,便于用户管理和编辑。MATLAB可以方便地读取和处理Excel文件,这在数据预处理阶段非常有用。 在MATLAB中进行网络爬虫需要注意以下几点: 1. **合法性和道德性**:确保你的爬虫行为符合网站的robots.txt文件规定,并尊重网站的数据使用政策。 2. **速率控制**:频繁的请求可能会被服务器识别为攻击,因此需要设置适当的延迟,避免被封IP。 3. **错误处理**:网络请求可能出现各种问题,如网络中断、服务器响应错误等,需要编写异常处理代码来应对这些问题。 4. **数据存储**:爬取的数据通常需要存储,可以选择数据库、文本文件或Excel文件等形式,MATLAB提供了多种数据存储接口。 5. **数据清洗和分析**:爬取到的数据可能含有噪声或非结构化信息,需要通过MATLAB的字符串操作和数据分析功能进行清洗和处理。 这个项目展示了MATLAB在数据获取和初步处理方面的能力,对于学习和实践Web爬虫技术,以及理解如何在MATLAB环境中进行网络编程具有很好的参考价值。通过深入研究这个示例,我们可以学习到如何将MATLAB与Web服务相结合,实现自动化数据抓取,从而为数据分析和科学研究提供便利。
2025-05-23 14:43:42 8KB matlab
1
Python爬虫技术在当代网络数据抓取中占据重要位置,而针对特定媒体如中国日报的新闻爬取,则成为数据分析和信息监控的有力工具。对于要实现基于关键词爬取中国日报新闻的功能,需要了解并应用一系列的知识点,包括但不限于爬虫基础、Python编程、网络请求处理、HTML解析、数据存储以及遵守网站爬取规则等。 爬虫的基础理论是必须掌握的。爬虫即网络机器人,其工作原理是通过模拟人类在网络上的行为,访问网页并抓取网页内容。对于中国日报这样的新闻网站,爬虫会根据设定的关键词,自动访问相关网页,抓取包含这些关键词的新闻标题、正文内容等信息。 Python作为一种广泛应用于数据科学的编程语言,因其简洁性和强大的库支持,成为开发爬虫的理想选择。使用Python开发爬虫,通常会用到requests库来发送HTTP请求,用BeautifulSoup或lxml库进行HTML内容的解析,以及用pandas或openpyxl等库处理和存储数据。 当爬取特定网站的内容时,了解HTML结构是必不可少的环节。通过检查网页的HTML源码,可以定位到包含新闻标题和内容的标签,从而利用HTML解析库进行精确抓取。例如,如果新闻标题被包裹在

标签内,而正文内容则可能位于
标签内,这样就可以通过解析这些标签来提取所需信息。 数据存储也是爬虫工作的一个重要部分。根据需求的不同,可以选择将抓取到的数据存储在CSV文件、Excel表格或者数据库中。对于需要进一步处理分析的数据,存储到数据库中能够更方便地进行管理和查询。 在使用爬虫时,还需特别注意网站的Robots协议,该协议规定了哪些内容可以被爬虫抓取,哪些不可以。很多网站的Robots协议是公开的,通常可以在网站根目录找到。中国日报网站的Robots协议也应被遵守,以避免过度请求导致IP被封禁,或者引发法律问题。 针对中国日报的新闻爬取,还需考虑语言处理方面的知识点。例如,如果希望爬虫能够理解语义而不是仅仅抓取含有特定关键词的静态匹配结果,就需要用到自然语言处理(NLP)技术,如分词、词性标注等,来帮助提升信息抓取的质量和准确性。 在实际编程实现时,还可能需要处理异常情况,比如网络请求失败、解析错误等问题。因此,编写健壮的爬虫代码需要考虑异常处理机制,确保爬虫在遇到意外情况时能够继续稳定运行或优雅地恢复。 爬虫的运行效率和规模也是一个需要考虑的问题。在面对大型网站时,单线程的爬取效率可能非常低,此时可以利用Python的异步编程库asyncio,或者采用多线程、多进程技术来提高爬虫的运行效率。 总结而言,实现一个按关键词爬取中国日报新闻的Python爬虫,涉及到爬虫理论、Python编程、网络请求与响应、HTML解析、数据存储、网站规则遵守、语言处理及异常处理等多个知识点。通过综合运用这些知识点,可以构建一个功能强大、高效且安全的爬虫程序。
2025-05-12 00:05:27 4KB 爬虫 python 新闻爬虫
1

python爬取王者荣耀英雄皮肤
2025-05-03 23:20:41 1KB python 王者荣耀
1
本文基于Python爬取招聘网站,运用爬虫收集关于“Python”“大数据”等字眼的岗位数据进行数据分析。研究职位、工资等信息对于大数据岗位的影响,可以提高找工作的效率,同时也能找到一份自己满意的工作。 【Python爬虫与数据分析在招聘网站应用】 在当今竞争激烈的就业市场中,高效地寻找适合自己的工作岗位至关重要。本文介绍了一种使用Python爬虫技术来抓取招聘网站上的岗位信息,特别是涉及"Python"和"大数据"相关的职位,通过数据分析来洞察职位需求、薪资水平等关键因素,帮助求职者优化找工作策略。 1. **需求分析** 需求分析阶段,作者关注了毕业生在找工作时面临的困扰,即如何快速定位并筛选符合个人技能和兴趣的职位。通过Python爬虫抓取特定关键词的岗位信息,可以提供有针对性的数据支持,帮助求职者了解市场趋势,提高决策效率。 2. **发送请求** 使用Python的`requests`库发送HTTP GET请求,获取目标网页的HTML内容。在请求中,正确设置URL和headers是确保请求成功的关键。图1-1和1-2展示了如何调用`get`方法及传递参数。 3. **获取响应内容** 一旦收到响应,首先检查响应状态码是否为200,表示请求成功。考虑到网页可能采用非UTF-8编码,这里声明了GBK编码以避免解码错误。使用BeautifulSoup解析HTML内容,并配合正则表达式(re)提取嵌入在JavaScript中的数据。 4. **解析数据** 分析网页结构,找到包含职位、公司、地点和薪资等信息的HTML标签,如`job`、`company`、`place`和`salary`。图5至图8展示了这些标签的定位方式。 5. **保存数据** 抓取的数据被保存为CSV文件,这是一种常见的数据存储格式,便于后续的数据分析和处理。图9展示了生成CSV文件的过程。 6. **调试与测试分析** 在调试过程中,遇到的问题如`np.bool`的弃用,说明了及时更新库和理解库的变动对编程的重要性。通过修改为`np.bool_`,成功解决了这个问题。 7. **成果展示** 最终,生成的CSV文件提供了丰富的职位数据,可以进一步进行数据分析,例如统计前20大城市招聘岗位的数量(图12)。尽管在数据可视化过程中遇到"str"与"int"类型转换问题,但通过折线图呈现了部分分析结果。 这次课程设计不仅展示了Python爬虫在信息获取上的实用性,还强调了数据分析在求职策略中的价值。从项目规划到问题解决,作者通过实践提升了Python技能,深化了对数据处理流程的理解,这对其未来的学习和职业发展有着积极的推动作用。
2025-04-30 09:53:23 1.18MB python 数据分析
1
该Python脚本是一个用于爬取BOSS直聘网站上岗位信息的工具。它具备以下主要功能: 1. **配置和初始化**:导入必要的库,设置浏览器选项,禁用图片加载,禁用GPU,设置窗口大小等,以优化爬虫性能。 2. **发送企业微信消息**:当遇到需要验证的情况时,脚本会自动发送消息到企业微信。 3. **等待元素出现**:定义了一个函数,用于等待页面上的特定元素出现。 4. **获取城市各区区号**:通过请求BOSS直聘API,获取不同城市各区的区号信息,并保存到CSV文件。 5. **查看每个区的岗位页数**:爬取每个区域的岗位列表页面,获取总页数,并保存到CSV文件。 6. **爬取岗位信息**:访问每个岗位的列表页面,爬取岗位名称、工资、位置、公司信息等,并保存到CSV文件。 7. **获取岗位职责**:对已爬取的岗位链接进行访问,爬取岗位职责描述,并更新到CSV文件。 8. **获取和使用Cookies**:自动获取BOSS直聘网站的Cookies,并保存到文件,用于之后的自动登录和数据爬取。 9. **自动投递简历**:读取包含岗位链接的CSV文件,自动访问链接
2025-04-24 22:20:52 17KB
1
# employment.py 该文件抓取的是智联招聘网站的招聘信息,可以根据需要设置输入搜索关键词和查找页数,就会得到结果,生成相应的文件“{keyword}zhilian”, 项目中的AIzhilian.csv、javazhilian以及pythonzhilian就是生成的示例文件。 # employment2.py 通过驱动模拟自动控制浏览器搜索boss直聘网页上的相关信息,有关搜索关键词也是在代码上硬编码,不过目前有些问题只实现了一页,该程序爬取 得到的结果文件也是生成在同目录下,文明名为“boss_{运行时的日期}”
2025-04-24 01:01:46 89KB 爬虫 python
1
整体使用requests模块,把京东的搜索框作为一个加载页面,我们从窗体文件中为他传入一个关键词,把这个关键词作为京东搜索网址里搜索的keyword,我设的爬取范围是搜索商品自初始页面往后的600件商品,在这个京东的网页很神奇,因为有些商品你虽然在这个爬去中看到了,但是你拿着编号去页面搜索的时候却看不到,每一页有60+左边20=80个商品展示。为了增加爬取的速度我是用了多线程,总共大约18个,但速度快带来的代价就是我总共没使用几次,我的IP就封掉了,所以大家学习一下就行,别给人家添麻烦了,哈哈。
2025-04-22 22:27:42 12.75MB python 爬虫
1
爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
2025-04-13 22:13:50 44KB 爬虫 python 数据收集
1
在当今网络信息爆炸的时代,通过编写程序自动化地从互联网获取数据已经变得越来越普遍,Python作为一门强大的编程语言,在网络数据抓取领域中占据着举足轻重的地位。本文针对如何使用Python爬取大众点评网站中冰雪大世界评论区的数据进行了深入的研究,并提供了具体的实现方法和代码实例。 为了能够有效地爬取数据,需要了解大众点评网站的页面结构和评论数据是如何展示的。通常情况下,这些数据会以HTML格式存储在网页中,并通过JavaScript动态加载。因此,在编写爬虫之前,首先需要检查目标网页的请求头信息以及加载评论数据时所使用的JavaScript代码,以便确定数据加载的方式,是通过Ajax请求加载,还是直接嵌入在HTML代码中。 接下来,如果是通过Ajax加载数据,需要利用Python的requests库来模拟网络请求,或者使用selenium等自动化测试工具模拟浏览器行为,以获取实际加载评论区内容的API接口。如果是直接嵌入在HTML中,则可以使用BeautifulSoup或lxml等库解析HTML,提取评论内容。 为了实现对大众点评冰雪大世界评论区数据的爬取,本项目提供了设置页码的功能,这意味着用户可以根据需要爬取指定页码内的评论数据。为此,需要分析评论数据的URL结构,并预留修改URL接口的参数,以便爬虫能够修改URL参数从而访问其他页面的数据。例如,如果每页评论数据都是通过一个带有页码参数的URL访问的,我们则需要找到这个参数的规律,并将其编写成可修改的代码,以实现对多页数据的爬取。 在编写爬虫代码时,除了要处理网络请求和数据解析外,还需要考虑异常处理、数据存储等多方面的因素。网络请求可能会因为各种原因失败,例如目标网站服务器的响应错误、网络不稳定等,因此需要合理设计错误处理机制,保证爬虫程序的稳定运行。而数据存储方面,可以将抓取到的评论数据存储到文件或数据库中,便于后续的数据分析和处理。 需要特别注意的是,爬取网站数据时要严格遵守相关法律法规以及网站的服务条款。大多数网站对爬虫行为都有一定的限制,例如在robots.txt文件中声明不允许爬取的规则。因此,在编写爬虫前,必须仔细阅读目标网站的服务条款,并确保爬虫的行为不会违反法律法规或对网站造成损害。 通过Python爬取大众点评冰雪大世界评论区数据的过程涉及到了网络请求模拟、数据解析、多页数据爬取和异常处理等多个方面。只要合理利用Python及其相关库的功能,就能够有效地抓取和分析这些网络数据,为数据分析和决策提供有力支持。
2025-04-13 20:32:15 4KB python
1