植被覆盖度( FVC)指植被(叶、茎、枝)在地面垂直投影面积占区域总面积比例。 像元二分模型计算:FVC=(NDVI - NDVI_soil)/(NDVI_veg - NDVI_soil) 式中,NDVI_soil为完全裸土或无植被覆盖区域NDVI值,NDVI_veg为完全被植被覆盖的像元NDVI值。累计百分比为5%时的NDVI值为NDVI_soil,累计百分比为95%时的NDVI值为NDVI_veg。
2025-06-15 17:33:19 1KB python 像元二分模型
1
内容概要:本文介绍了如何利用Google Earth Engine平台进行土壤湿度分析。首先,定义了研究区域(AOI)为Dailekh,并设定了分析时间段为2024年全年。接着,加载Sentinel-1 SAR数据(包括VV和VH极化)计算雷达土壤湿度指数(RSMI),并加载Sentinel-2光学数据计算归一化植被指数(NDVI)和归一化水体指数(NDWI)。将这些指数组合成综合图像,用于更全面的土壤湿度评估。此外,还进行了基于区域的统计分析,并生成柱状图展示各指数的平均值。最后,将分析结果导出到Google Drive,包括GeoTIFF格式的图像和CSV格式的统计数据。 适合人群:从事农业、环境监测或地理信息系统相关领域的研究人员和技术人员。 使用场景及目标:① 对特定区域(如Dailekh)的土壤湿度进行长时间序列监测;② 利用多源遥感数据(SAR与光学数据)提高土壤湿度估算精度;③ 通过图表和统计数据直观展示和分析土壤湿度变化趋势。 阅读建议:本文详细记录了土壤湿度分析的具体步骤和方法,建议读者熟悉Google Earth Engine平台的操作,并掌握基本的遥感数据分析知识,在实践中逐步理解和应用文中提供的代码和技术。
2025-05-27 14:47:21 4KB 土壤水分 地理信息系统 GIS
1
作者基于2000-2022年MOD13Q1产品、逐月气温、降水数据,2000、2010、2020年土地利用数据等,通过经验正交分解法,分离植被指数异常变化的空间区域;将植被指数异常增加区分为:强、弱人类活动干扰区。强人类活动干扰区,指2000-2010年和2010-2020年土地利用类型发生改变的地区,以及农田和建成区等人类活动强干扰区;弱人类活动干扰区,指土地利用类型未发生改变,同时植被异常增加的区域。利用残差趋势分析,量化强、弱人类活动干扰区气候变化和人类活动对植被指数动态的相对贡献率,得到黄土高原植被指数时空变化数据集。数据集内容包括:(1)研究区范围数据;(2)2000-2022年黄土高原植被指数变化空间分布数据;(3)黄土高原人类活动强弱分区数据;(4)人类活动和气候变化对黄土高原植被指数变化贡献率空间分布数据;(5)黄土高原植被指数年内最大值对应月份空间分布数据;(6)2000-2022年历年黄土高原植被指数数据;(7)2000-2022年黄土高原植被指数 异常时空系数数据。其中,栅格数据的空间分辨率为250 m x 250 m。数据集存储为.shp、.tif和.xlsx格式,由33个数据文件组成,数据量为9.56 MB(压缩为1个文件,8.76 MB)。李双双, 段生勇, 胡佳岚等. 黄土高原植被变化主导空间模态及其影响因素[J]. 地理学报, 2024, 79(7): 1768-1786.
2025-05-23 15:00:06 8.76MB 黄土高原 植被指数 数据集
1
**正文** 本文将深入探讨"PROSAIL模型前向模拟与植被参数遥感提取"这一主题,该主题涉及遥感技术、植被生态学以及计算机编程等多个领域。PROSAIL模型是一种广泛使用的光谱辐射传输模型,它在植被遥感研究中扮演着至关重要的角色,能够帮助科学家们理解和解析遥感图像中的植被信息。 **PROSAIL模型介绍** PROSAIL是"PROSPECT + SAIL"的简称,是两个经典的植被光谱模型的组合。PROSPECT模型主要关注叶片层面的物理过程,考虑了叶绿素、液泡、细胞壁以及气孔等因素对光吸收和散射的影响。而SAIL模型则着眼于冠层层面,通过考虑冠层结构的不均匀性来模拟光的分布和植被反射特性。当这两个模型结合在一起时,就形成了一个既考虑单个叶片特征又考虑冠层整体效应的综合性模型。 **前向模拟** 前向模拟是PROSAIL模型的核心应用之一。它通过输入特定的植被参数(如叶面积指数、叶绿素含量、气孔导度等),计算出对应的光谱反射率或透射率。这些模拟结果可以用来预测不同植被类型、健康状态或环境条件下的遥感光谱响应,为遥感数据的解释提供理论依据。 **植被参数遥感提取** 遥感技术可以获取大面积、高时空分辨率的植被信息,但如何准确地从遥感图像中提取出植被参数是一项挑战。PROSAIL模型的前向模拟功能使得我们可以反演这些参数,例如叶绿素含量、叶干物质含量、冠层厚度等。这通常涉及到一个迭代优化过程,通过比较模型模拟的光谱与实际遥感观测值,不断调整参数以求得最佳匹配。 **代码实现** 提供的压缩包中包含了"prosail-2.0.5.zip",这很可能是一个包含PROSAIL模型源代码或者封装好的软件工具。使用这些代码或工具,用户可以进行参数设置、输入数据处理、模型运行及结果分析。同时,"Anaconda3-5.3.1-Windows-x86_64.exe"是一个Python科学计算环境,通常用于数据处理、建模和可视化,非常适合与PROSAIL模型配合使用。 在实际操作中,用户首先需要安装Anaconda,然后导入并运行PROSAIL模型的代码,设定合适的参数,加载遥感数据,最后通过比较模拟结果与实际遥感图像,反演出植被参数。这个过程可能涉及到数据预处理、模型调参、误差分析等多个步骤,需要一定的编程技能和遥感知识。 掌握PROSAIL模型前向模拟与植被参数遥感提取技术,对于理解植被生态系统、监测气候变化、评估农田生产力、保护生态环境等方面具有重要意义。通过深入学习和实践,我们可以利用这些工具更有效地从遥感数据中提取出有价值的生态信息。
2025-05-15 15:49:11 619.94MB
1
植被护坡中根土相互作用机制的探讨,曹小红,蔡汉成,植物根系力学强度与其纤维素及木质素含量、拉伸延长率有关,而根系本身的力学特征、土体的物理力学性质及根和土的接触程度直接影
2024-03-01 16:03:09 215KB 首发论文
1
三河(SRTR)源区气候变暖下的植被动态及其生态影响令人严重关注。 在这项研究中,我们调查了六个生态系统在生长期(NDVIgr)和生长期开始(SOS)期间标准化差异植被指数的时空变化。 我们使用残差趋势法研究了1982年至2015年植被参数,气温,降水和土地管理之间的关系。在研究期间,NDVIgr以0.0061 / 10a的速率增加,SOS升高了0.96 d / 10a。 从1982年到2015年,所有六个植被生态系统的NDVIgr均增加。SOS显示草甸(0.1236 d / a)和草原(0.3480 d / a)的植被类型呈上升趋势,但森林,灌木,贫瘠的植被呈延迟趋势。土地和高山植被。 相关分析的结果表明,SRTR中气温的升高是解释NDVI升高和SOS进步的主要因素。 总体而言,变暖的气候和合理的人类活动对植被的生长具有积极影响,而人类活动的积极影响却弱于气候因素。 该研究为青藏高原SRTR的植被变化及其对气候变暖的响应的研究和预测提供了必要的基础。
2024-01-11 14:46:32 3.68MB 行业研究
1
基于光谱指数的植被含水率遥感反演模型研究--以岷江上游毛尔盖地区为例,潘佩芬,杨武年,利用研究区植被样本实测含水率和实测光谱数据,基于植被光谱指数法,建立植被含水率与植被光谱指数之间的数学模型,同时利用该模
2024-01-11 14:10:09 1.85MB 首发论文
1
植被的存在对保护天然河流和湿地的生态系统和水环境起着重要的作用,但它改变了水流的速度场,从而影响了污染物和生物量的运输。 作为分析通道环境容量的前提,水流的垂直速度分布引起了很多研究关注。 但是,仍然缺乏良好的预测模型。 对于淹没植被的河道,植被下部下部的垂直速度分布与非植被上部流动的垂直速度分布是不同的。 在本文中,在回顾了Baptist等人提出的最新两层模型之后,作者通过引入不同的混合长度标度(λ)提出了一种改进的两层分析模型。 所提出的模型基于流动的动量方程,其中湍流涡流粘度假定为与局部速度的线性关系。 将该模型与文献中针对不同数据集的Baptist模型进行了比较,结果表明,与Baptist模型相比,该模型对于一定范围的数据可以更好地改善垂直速度分布预测。 该研究表明,λ与植被的淹没(H / h)密切相关,如所建议。 当常数β为3/100时,所提出的模型与研究的广泛数据集显示出良好的一致性:1.25至3.33的水深(H)/植被高度(h),1.1至18.5的a的不同植被密度m-1(定义为单位体积植被的前缘面积),床坡度为(1.38-4.0)×10-3。
1
对于淹没的植被流,速度分布在下部区域的植被层和上部非植被区域的表层具有两个独特的分布。 基于混合层的类比,针对两层中的速度分布提出了不同的分析模型。 本文评估了Klopstra等人,Defina和Bixio,Yang等人的四个分析模型。 和Nepf对照文献中提供的各种独立实验数据。 为了检验模型的适用性和鲁棒性,作者使用了19个数据集,这些数据具有不同的相对淹没深度,不同的植被密度和河床坡度(1.8×10-6-4.0×10-3)。 这项研究表明,没有一个模型能够很好地预测所有数据集的速度剖面。 在某些情况下,除了Yang的模型以外的三个模型都表现良好,但在大多数研究的情况下,Yang的模型都失败了。 还发现,如果使用相同的涡流混合长度尺度(λ),则Defina模型与Klopstra模型几乎相同。 最后,仔细检查Defina模型中涡流的混合长度尺度(λ),发现当λ/ h = 1/40(H / h)1/2时,该模型可以很好地预测所有使用的数据集的速度分布。
2023-12-16 13:25:53 1.44MB 水生植被 速度剖面 分析模型 刚性植被
1
植被遥感上机课程-植被辐射传输模型,PROSAIL
2023-09-12 08:48:56 4.49MB 植被 遥感 辐射
1