求线性方程组的解C++源代码。求出系数行列式的值,再根据克莱姆法则求解。(保证全过)
2023-04-04 18:10:41 4KB C++ 线性方程组 行列式 克莱姆法则
1
随着科学技术的发展以及电子信息技术的广泛应用,非线性问题成为数值 计算领域研究的重要方向之一,而非线性方程组的求解则是其最基本的问题。 本文主要研究了解非线性方程组的迭代方法。
2023-04-04 09:25:53 950KB 非线性
1
matlab求解二元一次方程组代码
2023-03-30 13:38:35 853KB 系统开源
1
常微分数值解matlab代码ODE 系统 - 数值求解器 使用 Runge-Kutta 求解常微分方程组 依赖 用 Fortran 90 编写的代码 gfortran 编译器 使用 Matlab/Octave 绘制解决方案 如何使用 运行代码 代码在 Fortran 90 中运行,您将需要一个 Fortran 编译器,例如 gfortran。 在代码中更改了问题条件,然后您需要编译每个更改: gfortran ode_solver_main.f90 -o 然后,运行: 在 Windows 上 your_exe_name.exe 在 Linux 上 ./your_exe_name.out 在此之后,代码将生成三个 .out 文件。 mash_info.out :包含域离散化的点。 output_solution.out :包含每个点的解决方案 绘图解决方案 您将需要 Matlab 或 Octave 来运行 .m 代码。 打开 Matlab/Octave 后,只需使用执行按钮运行代码并及时观察解决方案的变化。 数学模型 我们使用 4 阶 Runge-Kutt
2023-03-24 12:33:31 125KB 系统开源
1
利用高斯消元法,对方程组进行求解,简单易懂,适合菜鸟级别的“研究”
2023-02-25 14:40:59 2KB 高斯消元法求解方程组
1
在复数范围内求解一元二次方程组,可以用作C++的入门练习参考。
2023-02-22 20:51:33 1023B C++求解一元二次方程组
1
Matlab求解微分方程组及偏微分方程组.doc
2023-01-10 01:49:09 224KB Matlab求解微分方程组及偏微
1
ode86 对以下形式的常微分方程组进行积分dy/dx=f(x,y), y(x0)=y0, 使用12阶,8阶和6阶龙格-库塔公式对。 该方法使用高阶公式(使用局部外推法)进行改进。 对于比 1e-6 严格的公差,结果预计将优于 ODE45。 另见 ODE23 ODE45 和 ODEDEMO.M。 基于代码 ODE45 CB Moler,25-3-1987,MathWorks, Inc. 误差控制方法和系数取自通道Tsitouras 和 SN Papakostas,“Runge-Kutta 方法的廉价误差估计”,SIAM J. Sci。 计算。 20(1999) 2067-2088。 已测试 MATLAB 版本:6.1
2022-12-20 16:13:40 3KB matlab
1
可以用来解二元一次方程组的程序,非常好用
2022-12-11 19:44:45 5KB 解二元一次方程组程序
1
计算方法线性方程组求解高斯赛德尔迭代法、高斯列主元消去法 、计算方法线性方程组求解高斯赛德尔迭代法、高斯列主元消去法 计算方法线性方程组求解高斯赛德尔迭代法、高斯列主元消去法 计算方法线性方程组求解高斯赛德尔迭代法、高斯列主元消去法 计算方法线性方程组求解高斯赛德尔迭代法、高斯列主元消去法
2022-12-06 15:17:37 2KB python 线性方程组 计算方法
1