基于VSG技术的双机并联虚拟同步发电机系统研究与应用:采用Plecs平台进行电压电流双闭环控制与SVPWM空间矢量脉宽调制,模拟微电网多台逆变器并联工况,实现双机无功功率均分和有功功率按比例分配。基本工况及负载变化下的性能分析与验证。,VSG 同步发电机双机并联 Plecs 采用电压电流双闭环控制 svpwm 空间矢量脉宽调制 模拟微电网多台逆变器并联工况 基本工况: 本地负荷 240kw 10kvar 2-4s 投入 60kw 负荷 负载电压 311V 可实现双机无功功率均分, 有功功率按比例分配 可提供参考文献与简单 谢谢理解 部分波形如下: ,VSG; 虚拟同步发电机双机并联; Plecs仿真; 电压电流双闭环控制; svpwm; 空间矢量脉宽调制; 微电网逆变器并联; 基本工况; 负荷分配; 功率分配; 参考文献。,"VSG双机并联模拟微电网的功率分配与控制策略研究"
2025-05-12 13:53:17 1.04MB 数据结构
1
双向BUCK BOOST电路仿真:基于VDCM控制与电压电流双闭环控制的直流变换器惯性与阻尼特性研究,基于虚拟直流电机控制的双向BUCK BOOST电路仿真:增强直流微电网惯性阻尼与电压电流稳定性分析,双向buck boost电路仿真(VDCM控制 电压电流双闭环控制) 利用了传统电机的阻尼和旋转惯量以及励磁暂态特性,因此在负载功率变化时,输出电压更容易受到影响。 随着交流同步机在交流微电网中的逐渐应用,其思想也被用于dc dc变器中,实现了VDCM控制,从而增加了直流微电网的惯性和阻尼。 该仿真应用双向BUCK BOOST电路,采用直流电机(VDCM)控制策略,与传统pi对比提升了直流变器惯性阻尼特性。 可以看到负载输出的电压电流稳定 2018b版本及以上 ,双向buck_boost电路仿真; VDCM控制; 电压电流双闭环控制; 直流微电网; 惯性和阻尼; 2018b版本以上,基于VDCM控制的双向BUCK BOOST电路仿真:增强惯性与阻尼特性的DC微电网应用
2025-05-08 07:59:28 201KB istio
1
基于一致性算法的直流微电网电压电流恢复与均分策略:分布式二次控制方案的研究与MATLAB Simulink实现,基于一致性算法的直流微电网电压电流恢复与均分策略:分布式二次控制方案的研究与MATLAB Simulink实现,关键词:一致性算法;直流微电网;下垂控制;分布式二次控制;电压电流恢复与均分;非线性负载;MATLAB Simulink;顶刊复现,有意者加好友;本模型不,运行时间较长耐心等待 主题:提出了一种新的基于一致性算法的直流微电网均流和均压二级控制方案,该微电网由分布式电源、动态RLC和非线性ZIE(恒阻抗、恒电流和指数型)负载组成。 分布式二级控制器位于初级电压控制层(下垂控制层)之上,并利用通过与邻居通信来计算必要的控制动作。 除了表明在稳定状态下总是能达到预期的目标之外,还推导了恒功率负载(即零指数负载)平衡点存在和唯一的充分条件。 该控制方案仅依赖于本地信息,便于即插即用。 最后提供了电压稳定性分析,并通过仿真说明了该方案的优秀性能和鲁棒性。 ,关键词:一致性算法;直流微电网;下垂控制;分布式二次控制;电压电流恢复与均分;非线性负载;MATLAB Simulink
2025-04-25 16:11:50 900KB xbox
1
柴油发电机仿真 Matlab Simulink 柴油发电机matlab仿真 微电网仿真 柴油发电仿真 风光柴储微电网 光伏发电 柴油发电 风力发电 储能电池 光柴储微电网 风柴储微电网 风机光伏柴油储能微电网 柴油发电机仿真技术是在现代电力系统和能源领域中占有极其重要地位的技术之一。随着科技的飞速发展,柴油发电机的仿真技术也得到了显著的进步,特别是在微电网领域,仿真技术的应用愈发广泛和深入。微电网作为现代电力系统的一个重要组成部分,具有高度的灵活性和可靠性。在微电网中,柴油发电机作为主要的备用电源或者在可再生能源发电不稳定时的补充,其性能和运行的稳定性对于整个电网系统至关重要。 仿真技术能够在不进行实体实验的情况下,对柴油发电机在各种工况下的运行状态进行模拟分析,从而提前发现潜在问题,优化设计和运行策略。在微电网仿真中,柴油发电机与风力发电、光伏发电以及储能电池等不同类型的发电和储能设备相结合,模拟在各种外界条件和负荷需求变化下,微电网的综合性能和各设备的协同工作情况。 风光柴储微电网和风柴储微电网是将柴油发电机与可再生能源发电系统结合的典型应用。在这些系统中,柴油发电机与风力发电机、光伏发电系统以及储能电池协同工作,共同确保电力供应的稳定性和连续性。当风能和太阳能发电不稳定时,柴油发电机可以及时启动,补充电力供应,确保整个系统的可靠运行。同时,储能电池在风能和太阳能发电充足时储存电能,在需要时释放电能,进一步提高了微电网的稳定性和经济性。 光伏柴油储能微电网则是将柴油发电机与光伏发电系统相结合,并引入储能电池的微电网结构。这种结构既可以利用光伏发电的清洁性,又可以确保在阴雨天或夜间等光照不足的情况下,由柴油发电机提供稳定的电力支撑。储能电池的引入,可以平滑可再生能源发电的波动,降低柴油发电机的频繁启停,延长设备寿命,同时还能在电价较高时储存电能,实现经济效益的最大化。 在实际仿真过程中,研究人员通常会关注如何提高柴油发电机的性能,以及如何优化微电网中各设备的运行策略。通过仿真,可以深入分析柴油发电机在不同工况下的启动、运行、停机等过程中的动态特性,以及如何在微电网中合理分配各种能源,达到节能减排的目的。仿真方法不仅可以对柴油发电机本身的控制策略进行优化,还可以对整个微电网系统的运行策略进行模拟和分析,以寻找最佳的运行状态。 柴油发电机仿真技术在微电网中的应用,不仅涉及到柴油发电机本身的性能提升,还包括与可再生能源和储能设备的协调运行,以及对整个微电网系统的综合性能优化。这需要综合运用电力系统、自动控制、信号处理、计算机科学等多学科知识,通过不断的研究和实践,推动仿真技术在现代电力系统中的深入应用。
2025-04-14 05:03:14 254KB
1
【新能源微电网】新能源微电网是由分布式电源、储能设备、能量转换装置等组成的微型发配电系统,能够在独立或并网状态下运行,具有自我控制、保护和管理能力。它结合了新能源发电,如太阳能和风能,以提高能源利用率,尤其在偏远地区提供电力供应。然而,新能源的不稳定性给微电网的运行带来了挑战,如发电量预测和电网管理的困难。 【人工智能神经网络】人工神经网络是人工智能的核心组成部分,模拟生物神经网络结构,用于解决复杂问题,如信息处理和学习。在新能源微电网领域,神经网络主要用于处理非线性和复杂的预测任务,如风力发电量和电力负荷的预测。主要的神经网络分词法有:神经网络专家系统分词法和神经网络分词法,前者结合了神经网络的自学特性与专家系统的知识,后者通过神经网络的内在权重来实现正确分词。 【RBF神经网络】径向基函数(RBF)神经网络是神经网络的一种,常用于预测任务。它由输入层、隐藏层和输出层组成,其中隐藏层使用RBF作为激活函数,实现输入数据的非线性变换,从而适应复杂的数据模式。在微电网中,RBF神经网络用于短期负荷预测,能有效处理非线性关系,降低外部因素对预测的干扰。 【微电网短期负荷预测】短期负荷预测对于微电网的能量管理和运行优化至关重要。通过构建RBF神经网络模型,可以预测未来一定时间内的负荷变化。预测模型的建立通常需要选择与负荷密切相关的输入数据,如时间、气温、风速等,并进行数据预处理。MATLAB等工具可用于进行网络训练和仿真,以生成预测结果。 【风力发电预测】RBF神经网络同样适用于风力发电量的预测。通过对风速、气压等相关因素的预测,可以估算微电网系统的风力发电潜力,帮助维持系统的稳定运行,减少风电波动对微电网的影响。 总结来说,人工智能神经网络,尤其是RBF神经网络,为解决新能源微电网中的挑战提供了有效工具。通过精确预测新能源发电量和电力负荷,可以优化微电网的运行效率,确保其稳定性和自给自足的能力。此外,这种技术还能促进可再生能源的有效利用,有助于推动能源行业的可持续发展。
2025-03-31 07:34:50 1.66MB 能源时代 能源信息 参考文献 专业指导
1
在电力系统领域,船舶能源系统正逐渐从传统的独立交流电网转向更为高效、灵活的交直流微电网系统。本文将深入探讨“船用变流器交直流微电网仿真”这一主题,旨在提供一个基于MATLAB/Simulink的仿真平台,供学习者参考和研究。 我们关注的核心组件是“船用变流器”。变流器是电力系统中的关键设备,它负责将直流电(DC)转换为交流电(AC)或反之,以满足船上不同负载的需求。在船用环境中,由于空间限制、效率要求和能源管理复杂性,变流器的设计与控制技术显得尤为重要。变流器的性能直接影响到整个微电网的稳定性和能效。 接下来,我们讨论“微电网”这一概念。微电网是由分布式能源资源(如太阳能电池板、风力发电机等)和储能系统组成的局部电力网络。它可以独立运行,也可以并入主电网。在船用环境中,微电网能够优化能源利用,提高系统的可靠性和灵活性,同时减少对化石燃料的依赖。 “MATLAB/Simulink”是进行电力系统仿真的强大工具。MATLAB是一种高级编程语言,适合数值计算和数据分析;Simulink则是其图形化建模环境,特别适用于动态系统建模和仿真。通过Simulink,用户可以构建复杂的电气系统模型,包括变流器、微电网控制器以及电力电子设备,并进行实时仿真,以验证设计的有效性和稳定性。 在这个特定的仿真项目中,“bingliwang.slx”很可能是一个已保存的Simulink模型文件。这个模型可能包含了船用变流器和微电网的详细结构,包括变流器拓扑、控制策略、能量管理系统等。用户可以通过打开这个文件,观察和分析模型的组成部分,甚至修改参数进行定制化的仿真试验。 学习者可以通过此仿真模型了解如何设计和控制船用变流器,以及如何在微电网中实现有效的功率分配和电压/频率控制。这包括但不限于以下知识点: 1. 变流器拓扑结构:例如,电压源逆变器(VSI)或电流源逆变器(CSI)的选择,以及它们的工作原理。 2. 控制策略:PID控制器、滑模控制、预测控制等,及其在船舶电力系统中的应用。 3. 微电网稳定性分析:研究不同工况下的电网稳定性,如并网、孤岛运行等。 4. 电力电子器件选型与保护:考虑IGBT、MOSFET等器件的特性,以及过压、过流保护策略。 5. 能量管理:研究如何优化能源分配,确保关键负载的供电需求。 这个船用变流器交直流微电网的仿真项目为学习者提供了一个实践平台,有助于深化理解电力系统特别是船舶电力系统中的核心技术和挑战。通过实际操作和调整,学习者可以提升自己的理论知识和工程技能,为未来的实际应用打下坚实基础。
2025-03-27 00:39:15 375KB matlab simulink 微电网仿真
1
智能微电网(Smart Microgrid, SMG)是现代电力系统中的一个重要组成部分,它结合了分布式能源(Distributed Energy Resources, DERs)、储能装置、负荷管理以及先进的控制策略,旨在提高能源效率,提升供电可靠性,同时减少对环境的影响。在智能微电网的运行优化中,粒子群优化算法(Particle Swarm Optimization, PSO)是一种常用且有效的计算方法。 粒子群优化算法是一种基于群体智能的全局优化算法,由Kennedy和Eberhart于1995年提出。该算法模拟自然界中鸟群或鱼群的集体行为,通过每个个体(粒子)在搜索空间中的随机游动来寻找最优解。每个粒子都有一个速度和位置,随着迭代过程,粒子根据其当前最佳位置和全局最佳位置调整自己的速度和方向,从而逐渐逼近全局最优解。 在智能微电网中,PSO算法常用于以下几类问题的优化: 1. **发电计划优化**:智能微电网中的能源来源多样,包括太阳能、风能、柴油发电机等。PSO可以优化这些能源的调度,以最小化运行成本或最大化可再生能源的利用率。 2. **储能系统控制**:储能装置如电池储能系统在微电网中起着平衡供需、平滑输出的关键作用。PSO可用于确定储能系统的充放电策略,以达到最大效率和最长使用寿命。 3. **负荷管理**:通过预测和实时调整负荷,PSO可以帮助微电网在满足用户需求的同时,降低运营成本和对主电网的依赖。 4. **经济调度**:在考虑多种约束条件下,如设备容量限制、电力市场价格波动等,PSO可实现微电网的经济调度,确保其经济效益。 5. **故障恢复策略**:当主电网发生故障时,智能微电网需要快速脱离并进行孤岛运行。PSO可用于制定有效的故障恢复策略,确保微电网的稳定运行。 6. **网络重构**:微电网的拓扑结构可以根据系统状态动态调整,以改善性能。PSO可以找到最优的网络配置,降低线路损耗,提高供电质量。 在实际应用中,PSO可能面临收敛速度慢、容易陷入局部最优等问题。为解决这些问题,研究人员通常会对其基本形式进行改进,如引入惯性权重、学习因子调整、混沌、遗传等机制,以提高算法的性能和适应性。 在“3智能微电网PSO优化算法,比较全,推荐下载”这个压缩包文件中,可能包含多篇关于智能微电网中PSO优化算法的研究论文、代码示例或案例分析。这些资源可以帮助读者深入理解PSO在智能微电网中的应用,并为相关领域的研究和实践提供参考。通过学习和应用这些材料,不仅可以提升对微电网优化的理解,也能掌握PSO算法在实际问题中的实施技巧。
2024-08-19 17:07:34 69KB
1
智能微电网是一种集成可再生能源、储能系统以及传统能源的分布式发电系统,它具有自调度、自治和并网/离网切换的能力。在智能微电网的运行优化中,粒子群优化算法(PSO)是一种广泛应用的优化工具。PSO是由 Swarm Intelligence(群体智能)理论发展而来的一种全局优化算法,其灵感来源于鸟群寻找食物的行为。 PSO算法的基本思想是通过模拟鸟群中的个体(粒子)在搜索空间中的飞行和学习过程,寻找最优解。每个粒子代表一个可能的解决方案,并带有两个关键的速度和位置参数。粒子根据自身经验和全局最佳经验更新速度和位置,从而逐步逼近最优解。 在MATLAB中实现PSO优化算法,首先需要定义问题的目标函数,即需要优化的函数。对于智能微电网,可能的目标函数包括最小化运行成本、最大化可再生能源利用率或最小化对主电网的依赖等。然后,设定PSO算法的参数,如种群大小、迭代次数、惯性权重、认知学习因子和社会学习因子。 在MATLAB中,可以使用内置的`pso`函数来方便地实现PSO算法。该函数允许用户自定义目标函数、约束条件和算法参数。例如,你可以这样设置: ```matlab options = psoOptions('Display','iter','MaxIter',100,'PopulationSize',50); [x,fval] = pso(@objectiveFunction,xlimits,options); ``` 在这里,`objectiveFunction`是你定义的目标函数,`xlimits`是定义的变量范围,`options`包含了算法设置。 对于智能微电网的调度问题,优化变量可能包括各电源的出力、储能系统的充放电策略等。PSO算法会为这些变量找到最优值,从而实现智能微电网的高效运行。 在实际应用中,可能还需要考虑各种约束,如设备的功率限制、电池的充放电限制、电网的电压稳定性和频率约束等。这些约束可以通过惩罚函数或约束处理方法融入目标函数,确保优化结果的可行性。 文件列表中的“智能微电网PSO优化算法”可能包含以下内容:源代码文件(.m文件),其中定义了目标函数、优化参数、约束条件以及PSO算法的实现;数据文件(.mat或.csv),用于存储微电网的系统参数和运行数据;结果文件,包括最优解、性能指标和优化过程的可视化图表。 MATLAB中的PSO算法为解决智能微电网的优化问题提供了一种有效且灵活的方法。通过调整算法参数和优化目标,可以适应不同的运行场景和需求,实现微电网的智能化管理和优化运行。
2024-08-19 17:06:43 8KB matlab
1
1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位 ##### 6.2 无线传感器覆盖优化 ##### 6.3 室内定位 ##### 6.4 无线传感器通信及优化 ##### 6.5 无人机通信中继优化 #####
2024-08-19 16:57:32 25.24MB matlab
1
微电网是一种分布式能源系统,它能够在与主电网连接或处于孤岛模式下独立运行。在孤岛模式下,微电网的调度优化问题变得尤为重要,因为需要确保系统的稳定性和经济性。本资料主要探讨了如何利用遗传算法来解决孤岛型微电网的成本最低调度优化问题,并提供了MATLAB代码作为辅助理解。 遗传算法是一种模拟自然选择和遗传机制的全局优化方法,它通过模拟生物进化过程中的“适者生存”原则,逐步改进解空间中的个体,从而逼近问题的最优解。在微电网调度优化中,遗传算法可以用于寻找电力系统中各个能源设备的最佳运行策略,包括发电机、储能装置和负荷的调度,以达到最小化运营成本的目标。 在微电网中,多种能源如太阳能、风能、柴油发电机等并存,它们的出力特性各异,调度时需要考虑其不确定性、波动性和非线性。遗传算法可以有效地处理这些复杂因素,通过编码、初始化、交叉、变异和选择等步骤来搜索最优解决方案。编码通常将微电网中的设备状态和调度决策转化为适合遗传操作的数字串;初始化阶段生成初始种群;交叉和变异操作则保证了种群的多样性,避免过早收敛;选择过程则是根据适应度函数(在此案例中可能是总成本)淘汰劣质个体,保留优良基因。 资料中的MATLAB代码实现了上述遗传算法的全过程,并且针对孤岛型微电网进行了定制化设计。代码可能包含了以下部分:数据输入模块,用于定义微电网的设备参数和运行约束;目标函数定义,计算运行成本;遗传算法的核心实现,包括种群生成、适应度评估、选择、交叉、变异等操作;以及结果分析和可视化。 此外,描述中提到的其他领域如智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划和无人机,都是MATLAB在工程和科研中广泛应用的领域。这些技术虽然没有直接关联于微电网优化,但都体现了MATLAB作为一种强大的多学科工具箱,可以支持各种复杂的建模和仿真任务。 这个压缩包提供了一个使用遗传算法解决孤岛型微电网调度优化问题的实例,对于学习微电网优化和遗传算法的实践者来说是宝贵的资源。通过阅读和运行代码,可以深入理解这两种技术的结合及其在实际问题中的应用。同时,这也提醒我们,MATLAB作为一款强大的工具,可以跨越多个工程和科学领域,实现多元化的问题解决。
2024-07-15 20:16:14 233KB matlab
1