机器学习基于yolov5的海棠花花朵检测识别项目源码+数据集+课程报告 1、搭建环境 创建运行yolov5的虚拟环境:conda create -n yolov5 python=3.9 安装yolov5的运行环境:pip install -r requirements.txt 运行yolov5算法:python detect.py --source 0 # webcam img.jpg # image vid.mp4 # video path/ # directory path/*.jpg # glob 'https://youtu.be/Zgi9g1ksQHc' # YouTube
2024-06-25 15:44:13 21.59MB 机器学习 数据集 课程资源
1
数据标准化(Normalization)是指:将数据按照一定的比例进行缩放,使其落入一个特定的小区间。 为什么要进行数据标准化呢? 去除数据的单位限制,将其转化为无量纲的纯数值,便于不同量级、不同单位或不同范围的数据转化为统一的标准数值,以便进行比较分析和加权。 通过手写Python代码对海伦约会对象数据集完成数据标准化归一化的预处理。 其中包含: (1)Min-Max标准化 (2)Z-Score标准化 (3)小数定标标准化 (4)均值归一化法 (5)向量归一化 (6)指数转换
2024-05-12 16:42:06 981B python 机器学习 数据挖掘 数据预处理
1
PEMS 数据集是由美国加利福尼亚州的交通部门联合其他伙伴机构建立的统一公开交通数据库。美国加利福尼亚州的交通部门在交通路网上大约设置了超过39000 个交通监测站,交通管理部门安装在路网上的各类传感器可以实时地收集所在高速公路上的交通状况信息,越是接近市区人口密集的地区,传感器布置的也越密集,从分布上来看,这些传感器大多被安置在靠近市区的路段上。PEMS提供了超过十年的历史交通状况数据,整合了有关加州运输公司以及其他交通机构系统的各类信息。 PemsD3 交通数据集:数据由分布在加利福尼亚州高速公路系统(CalTrans)中选择 228 个站点数据。数据集从30 秒的数据样本聚合到5 分钟的时间间隔内。时间范围在 2012 年5 月和6 月的工作日的228 个站点交通速度信息,数据包括邻接矩阵和特征矩阵。 邻接矩阵是通过分析已有时空交通数据的特性,构建一种新的具有相似交通流量模式的 矩阵,特征矩阵是每个传感器节点的时间序列特征矩阵。
2024-05-12 15:41:48 14.68MB 深度学习 数据挖掘 交通预测 交通网络
1
21个深度学习开源数据集分类汇总.docx
2024-05-10 19:50:40 27.34MB 深度学习 数据集
1
主要用于数据集的制作,要点在于图片的resize和由彩色图到灰度图的转换,以及随机划分测试与训练集
2024-05-01 17:55:17 2KB dataset 机器学习 数据集制作
1
基于opencv与机器学习的摄像头实时识别数字,包括完整代码、数据集和训练好的模型。识别准确率高达95%!!代码注释详细,方便理解!代码可以直接运行使用,没有门槛。
2024-04-13 19:52:48 68.25MB opencv 机器学习 数据集 数字识别
1
python数据分析,因为股票价格的影响因素太多,通过k线数据预测未来的价格变化基本不可行,只有当天之内的数据还有一定的关联,故feature与target都选择的是当天的数据。 加载数据 为了加快数据的处理速度,提前将mariadb数据库中的数据查询出来,保存成feather格式的数据,以提高加载数据的速度。 经过处理,不同股票的数据保存在了不同的文件中,列名还保持着数据库中的字段名。我选择了股票代码为sh600010的这只股票作为数据分析的数据来源。预测出来的结果与真实值变化趋势相近,说明线性回归模型在一定程度上能够解释收盘价与选取的feature之间的关系
2024-04-10 10:35:59 342KB python 机器学习 数据集 股票预测
1
KDD99入侵检测数据为网络上注明的 训练数据集合,数据特征共计41种特征,41种特征分为4个大类。本算法基于微软的LightGBM实现,实现简练。包括了从数据处理到训练模块到预测的全过程,准确率极高
2024-04-02 16:13:31 12KB KDD99 boost 机器学习 数据预处理
1
深度学习图像分类数据集 脑PET图像分析和疾病预测挑战赛%2F脑PET图像分析和疾病预测初赛数据 可以用来训练自己的模型
2024-03-07 19:12:28 18.55MB 深度学习 数据集 图像分类
1
深度学习——机器学习的新浪潮.pdf
1