海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-09-16 15:27:48 6.91MB matlab
1
《基于脉振高频电压注入的永磁同步电机无速度传感器控制》 在现代工业自动化领域,永磁同步电机(PMSM)因其高效率、高功率密度和良好的动态性能而被广泛应用。然而,在某些场合,如航空航天、电动汽车等,由于环境限制或成本考虑,无法安装传统的机械速度传感器。为解决这一问题,基于脉振高频电压注入的无速度传感器控制技术应运而生。 脉振高频电压注入法是一种无速度传感器控制策略,其基本思想是通过向电机的定子绕组中注入特定频率的高频信号,利用电机内部的电磁耦合效应来检测电机的转子位置和速度信息。这种方法的核心在于,高频信号会在电机内部产生一个附加的磁场分量,进而改变电机的电气特性。通过测量这些变化,可以推断出电机的实时状态。 在实现这一技术的过程中,首先需要理解高频电压注入的原理。"脉振高频电压注入法原理说明.pdf"这份文档详细解释了这一过程。它可能会涵盖以下几点: 1. 高频电压的生成:通常采用调制技术,如脉宽调制(PWM),将高频信号与基波电压相混合。 2. 信号注入:将高频信号注入到电机定子绕组中,形成瞬时的磁链波动。 3. 信号感应:转子运动导致的磁路变化会改变高频信号的感应效果,通过检测这一变化可以获取转子位置信息。 4. 信号处理:对感应到的高频信号进行滤波和解调,提取出转子速度信息。 "parameters.m"文件可能是控制算法中的参数设置,包括电机的电气参数(如电感、电阻、磁链等)、高频电压的幅值、频率和调制方式等。这些参数的选择直接影响到控制系统的稳定性和精度。 "运行说明.txt"文件可能包含了实验操作步骤和注意事项,比如如何配置MATLAB/Simulink环境,如何加载"FInjection_SVPWM_2018b.slx"模型,以及如何进行仿真和实际电机测试。Simulink模型是实现这种控制策略的工具,通过搭建包含高频电压注入模块的控制系统,可以模拟电机的运行并验证控制算法的性能。 "【参考文献】基于脉振高频电压注入的永磁同步电机无速度传感器控制.pdf"是深入研究该技术的重要资源,可能包含更深入的理论分析、实验结果和控制策略的优化方法。 基于脉振高频电压注入的永磁同步电机无速度传感器控制技术是一种先进的电机控制策略,涉及到信号注入、感应和处理等多个环节,通过合理设置参数和使用适当的控制算法,能够在没有速度传感器的情况下实现电机的精确控制。这项技术的应用对于提高系统的可靠性、降低成本和简化系统结构具有重要意义。
2025-09-14 20:57:29 1.03MB
1
多波长独立聚焦超构透镜技术展示:FDTD仿真超表面模型与多焦点实现案例,多波长独立聚焦超构透镜技术展示:FDTD仿真超表面研究与Matlab复现结果,多波长 独立聚焦超构透镜 fdtd仿真 超表面 复现lunwen:2017年OE:Dispersion controlling meta-lens at visible frequency lunwen介绍:单元结构为硅矩形纳米柱结构,通过调节结构的长宽尺寸,可以找到三个波长处高偏振转效率的参数,通过调整纳米柱的转角实现连续的几何相位调节,构建具有三个独立波长聚焦相位分布的超构透镜模型,可实现可见光波段的三原色聚焦和成像; 案例内容:主要包括硅纳米柱的单元结构仿真、偏振转效率的计算,几何相位的计算,超构透镜的不同色散曲线对应的超构透镜相位计算matlab代码,不同色散的超构透镜模型以及对应的远场电场分布计算; 案例包括fdtd模型、fdtd建模脚本、Matlab计算相位代码和模型仿真复现结果,以及一份word教程,超构透镜的不同色散相位计算代码可用于任意波段的超构透镜,具备可拓展性。 ,核心关键词: 多波长; 独立聚焦超构透镜; f
2025-09-13 16:54:33 7.22MB safari
1
论文作者没有开源训练过程,笔者补全了三个阶段的训练过程以及训练过程中的损失函数。按照论文中的损失函数写损失,模型无法收敛,最后出来的图全黑或者是很抽象,所以笔者修改了损失函数,确保最后出来的图片是一张正常的图片,虽然没有达到作者论文中的效果。第一次复现不全的代码,也是第一次复现代码成功,特此上传做一个纪念!!! 在深度学习和计算机视觉领域,图像处理一直是研究的热点,尤其在图像增强方面。URetinex-Net是一种结合了Retinex理论和深度学习的网络模型,它能够用于图像的色调复原、细节增强等工作,对于改善图像质量具有重要意义。论文作者虽然提出了这个模型,但未提供完整的代码实现和训练过程,这无疑为研究人员和开发者带来了不便。 笔者在面对这一挑战时,采取了积极的措施,着手补全了URetinex-Net模型的训练过程,并且在实验过程中发现了原论文中的损失函数存在的问题。原来按照论文中描述的损失函数进行训练时,模型难以收敛,导致生成的图像要么完全偏黑,要么图像内容异常抽象。这一问题的发现表明,理论与实践之间往往存在差距,理论推导的结果并不总能直接应用于实际问题解决中。 为了解决这一问题,笔者对损失函数进行了修改和调整,通过多次尝试和优化,最终得到了一个能够保证生成图像质量正常的损失函数。虽然最终的效果可能并未完全达到原作者在论文中描述的那样,但能够获得一张正常的图像,对于研究者而言已经是一个重要的进步。笔者的这一工作不仅为他自己解决了问题,也为其他可能遇到相同困难的研究者提供了帮助。 代码的复现和成功运行,对于理解和掌握一个算法至关重要。通过代码复现,研究者可以更深入地理解算法的每一个细节,从而更好地掌握其工作机制和原理。在没有现成开源资源的情况下,自行补全和调试代码,对于提升个人的技术能力是一种极好的锻炼。同时,代码的成功复现,对于推动学术交流和知识共享也有着积极的作用。 URetinex-Net模型的复现工作不仅展示了笔者个人的技术能力,也体现了开源精神的实践。将个人的复现成果上传至网络,让其他研究者能够更加便捷地访问和使用,这对于整个科研社区的发展而言是极为有益的。此次代码的上传,不仅仅是笔者个人研究的一个纪念,更是对学术共同体贡献的一个重要体现。
2025-09-11 09:24:13 343.86MB 代码
1
【小信号阻抗模型验证 频率扫描】 复现SCI、电机工程学报等顶刊lunwen,认准高质量模型和讲解服务 提供程序化扫频程序(simulink模型及PSCAD模型均可);全频段扫频模型,扫频精度极高;序阻抗 dq阻抗;原创成果,可提供详细讲解指导 提供FFT分析、传递函数计算、测量阻抗计算程序 程序化扫频方式相比于人工扫频快捷、方便,可程序化操作、一键运行,且更具有实用性和一般性。 [钉子]适用于mmc vsc lcc等变流器、PLL等元件、ac ac、dc dc、ac dc、dc ac等拓扑,以及直流输电、柔直、新能源(风电 光伏 单机 多机)、配电网、微电网等各类应用场景。
2025-09-10 17:45:18 472KB edge
1
内容概要:本文详细介绍了利用COMSOL软件进行水力压裂过程中岩石损伤的仿真模拟方法。首先,文中提供了具体的材料属性设置,如弹性模量、泊松比和损伤阈值应变等参数的配置。接着,阐述了压裂液注入的边界条件设定,强调了瞬态研究的时间步长选择及其重要性。然后,深入探讨了损伤演化的数学表达式,尤其是弱形式PDE接口的应用,并解释了弛豫时间和网格尺寸之间的关系。此外,文章还讨论了网格划分的技术细节,推荐使用自适应加密网格并给出了具体的网格生成函数。最后,提到了结果展示的方法,包括主应力比和损伤云图的耦合显示以及动画输出技巧。同时,文中多次提到避免常见错误,如正确处理单位换算、适当调整耦合系数等。 适合人群:从事水力压裂仿真研究的研究人员和技术人员,尤其是对COMSOL软件有一定了解的用户。 使用场景及目标:帮助读者掌握如何使用COMSOL进行水力压裂岩石损伤的仿真模拟,确保仿真结果能够准确复现实验现象,提高仿真精度和可靠性。 其他说明:附带的手把手教学视频详细演示了每个步骤的操作流程,特别针对参数微调进行了细致指导,有助于初学者快速上手并解决实际问题。
2025-09-05 13:14:43 329KB
1
全介质超表面技术:实现完美矢量涡旋光束与庞加莱球光束的生成与复现,全介质超表面技术:实现完美矢量涡旋光束及庞加莱球光束的生成与复现——基于FDTD仿真的拓扑荷数超表面模型案例研究,完美矢量涡旋光束 超表面 超透镜 fdtd仿真 复现:2021年Nature Communication :Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface lunwen介绍:全介质超表面实现完美矢量涡旋光束生成和完美庞加莱球生成,完美矢量涡旋光束不随拓扑荷的变化而变化,同时满足矢量光场的偏振变化,主要用于光学加密等领域; 案例内容:主要包括文章的两个不同拓扑荷数的完美矢量涡旋光束生成的超表面模型,不同阶次的完美涡旋光产生,其涡旋图案的半径基本不变。 同时验证了全庞加莱球光束的偏振变化和矢量特性。 所有结构采用二氧化钛介质单元执行几何相位加传输相位来构建; 案例包括fdtd模型、fdtd设计脚本、Matlab计算代码和复现结果,以及一份word教程,附带从相位和透射率中挑选用于自
2025-09-04 14:51:22 2.66MB gulp
1
2024国赛官网给出了四篇优秀论文,但很遗憾的是虽然论文有完整代码却并没有附上代码调用数据。主包花了一点点时间把其中一篇原论文(C234)用到的数据和原始代码整理出来了,大家看着用~ 若侵权请私信我删帖~ 数学建模是一种重要的科学研究方法,它通过建立数学模型来解决实际问题,广泛应用于工程技术、经济管理、生物医学等领域。在2024年的国赛中,四篇优秀论文均未附带完整的数据和代码,这对参赛者理解和复现研究成果造成了一定的困难。在这种情况下,一个名为主包的团队成员花费时间对其中一篇名为C234的论文所使用的数据和原始代码进行了整理和复原。 这项工作对于参赛者来说意义重大,因为数据和代码是复现论文成果的关键。没有这两样东西,其他参赛者只能通过阅读论文的文字描述来推测作者的研究过程,但这样的推测往往难以保证准确性。即便论文作者提供了完整的模型描述和算法逻辑,没有数据和代码作为支撑,复现其研究结果几乎是不可能的。 对于数学建模而言,代码的复现并不仅仅是将算法用计算机语言重新编写一遍那么简单,它还需要确保能够正确读取、处理数据,并且能够通过代码的执行来得到和原文相同或相近的结果。这需要对原论文的算法逻辑有深刻的理解,同时也需要具备良好的编程技能和调试能力。 此次主包团队的行动不仅展现了其对数学建模的热爱和对知识共享的重视,也为其他参赛者提供了便利,让他们能够更专注于模型的创新和问题解决的过程,而不是被数据处理和编程工作所困扰。更重要的是,这样的行为有助于推动数学建模领域内的知识交流和经验传承,有助于提升整个领域的研究水平。 然而,需要注意的是,无论是数据还是代码,都可能涉及到知识产权的问题。如果原始论文中未明确授权共享,那么这些材料的使用就可能构成侵权行为。因此,主包团队在分享这些资源时,强调了如果存在侵权问题,请联系他们删除相关内容,这体现了一种负责任的态度和对知识产权的尊重。 数学建模是一项系统而复杂的工作,它不仅要求参赛者具备扎实的数学基础和较强的编程能力,还要求他们具备良好的文献阅读能力和创新思维。通过复现优秀论文的代码,参赛者可以更好地理解模型构建的过程,掌握建模的方法和技巧,为解决实际问题打下坚实的基础。同时,这种复现工作也是对原作者工作的肯定和尊重,是科研诚信的体现。 在竞赛中,复现他人的研究成果是一门必修课。它能够帮助参赛者深入理解研究者是如何通过模型去解决特定问题的,这不仅能够加深对知识的理解,还能够激发参赛者在面对新问题时的创新灵感。通过实践操作,参赛者可以更好地把握模型的适用范围和局限性,从而在自己解决实际问题时,能够更加得心应手。 主包团队的这一行为对于2024国赛的参赛者而言,无疑是一个宝贵的学习资源。它不仅帮助参赛者节省了数据处理和代码调试的时间,还提供了一个接近实际研究过程的学习机会,有助于提高整个赛事的研究质量。同时,我们也要提醒所有参赛者,在使用这些资源时,一定要注意尊重原创者的知识产权,合规使用这些宝贵的资料。
2025-08-31 15:48:49 129KB 数学建模
1
内容概要:文章展示了一个用于故障检测的深度学习项目,采用PyTorch构建了一个一维卷积神经网络(CNN),针对工业故障诊断问题。文中详细地解释了从数据加载、预处理、模型搭建、训练到性能评估的全过程。通过归一化原始数据集,设计多层一维卷积与全局最大池化的网络架构,并应用交叉熵作为损失函数,利用Adam算法进行梯度下降最优化,最终实现了高精度的分类任务。 适用人群:对于机器学习尤其是深度学习领域感兴趣的科研人员或者工程师,特别是那些想要深入了解或实操如何使用深度学习技术解决实际问题如工业设备状态监测的研究者和技术开发者。 使用场景及目标:本项目的目的是为了提高机械设备运行状态监控系统的效率与准确性,可以应用于制造业、电力等行业,帮助实时监控设备健康状况,及时发现潜在故障点,从而减少非计划停机时间和维修成本。 其他说明:除了提供了一套完整的解决方案之外,本文还展示了如何计算模型的参数量,以便于控制模型复杂度。此外,文中也包含了模型训练过程中每轮迭代的耗时记录,这对于大规模数据集下优化算法选择具有重要参考价值。
2025-08-25 17:45:48 3KB 神经网络 故障检测 代码复现
1
内容概要:本文介绍了如何利用Lumerical FDTD(时域有限差分法)模拟不对称光栅的衍射效率及其与光波的交互过程。主要内容涵盖模拟环境的搭建,包括仿真区域、光源、光栅结构和收集器的设置,以及仿真的执行和后处理数据分析。通过具体的Python代码片段,展示了从定义光栅参数、配置光源和收集器到最后运行仿真并计算衍射效率的完整流程。 适合人群:从事光学工程、光电子学研究的技术人员,尤其是那些希望深入了解光栅衍射特性和掌握Lumerical FDTD模拟方法的研究者。 使用场景及目标:适用于需要精确模拟和分析光栅衍射效率的研究项目,帮助研究人员更好地理解和优化光栅的设计。同时,也为初学者提供了一个入门级的学习指南,使他们能够快速上手Lumerical FDTD工具。 其他说明:虽然本文提供了基本的模拟框架和步骤,但在实际应用中,可能还需要进一步深入探索Lumerical的高级功能和复杂的数据处理技巧。
2025-08-20 19:50:12 647KB
1