没有PWM发生器,需要连接外部微控制器或3525和其他控制电路。内置的12v300mabuck提供驱动部分和控制电路的电压。四个逻辑控制引脚引出,均为正逻辑,支持3.3v/5v电平。建议PWM不超过90%和200KHz。宽电压输入范围10-36V,内置欠压保护,当驱动部分独立供电时,电源输入电压可以达到50V(需要更换滤波电容器)。该芯片具有内置的死区时间发生器。
2025-04-17 23:30:20 5.02MB
1
在当今通信领域,调幅发射机(AM发射机)作为传统的无线电广播方式,依然扮演着重要角色。特别是针对小功率调幅AM发射机的设计,它满足了特定频率范围内的小型广播站点的需求。这种发射机设计的关键在于如何实现稳定、高效的调幅过程以及信号传输。 调幅发射机的核心部分包括高频振荡器、调制器、功率放大器和天线系统。高频振荡器负责产生稳定的载波信号,其频率决定了传输的频道。调制器将音频信号与高频载波信号混合,通过改变载波的幅度来携带音频信息。功率放大器则负责将调制后的信号进行放大,以达到所需的传输功率。天线系统负责将信号以无线电波的形式发送到空中。 小功率调幅AM发射机设计的关键之一是调制方式的选择与实现。调幅技术主要分为双边带抑制载波(DSB-SC)、双边带全载波(DSB-TC)和单边带调幅(SSB)。其中,DSB-TC是最常用的AM调幅方式,它包含了音频信息的两个边带和一个不携带信息的载波。为了提高传输效率和节省频谱资源,现代小功率AM发射机可能会选择采用DSB-SC或SSB调制方式,但这就需要更复杂的同步检波技术来还原音频信号。 此外,小功率调幅AM发射机设计中还需要考虑到功放的线性度问题,因为调幅过程中载波幅度的变化会放大任何非线性失真,导致信号失真。因此,放大器的设计必须平衡功率输出与线性度之间的关系,有时甚至需要加入预失真技术来提高线性度。 在小功率调幅AM发射机设计中,还有一个重要方面是频率稳定性的保持。由于调幅发射机的载波频率直接影响信号的接收质量,设计时需要采取措施保障频率的稳定性,这通常涉及到温度补偿、晶体振荡器的应用以及可能的自动频率控制(AFC)技术。 系统联调仿真是小功率调幅AM发射机设计的最后一个关键步骤。在此阶段,所有的硬件组件和电路将被集成在一起,以检验整个系统的性能。通过仿真软件可以模拟真实环境下的工作情况,对系统中可能出现的问题进行预测和调整。这种方法能够在实际制造和部署之前发现并解决设计上的缺陷,提高发射机的可靠性和性能。 在小功率调幅AM发射机设计中,还必须考虑法律法规对于无线电频谱使用的限制和要求。例如,发射机的功率大小、工作频段、辐射限值等都会受到相应无线电管理机构的规定。因此,设计时必须符合相关的技术规范和法规标准。 小功率调幅AM发射机的设计涉及到调制技术的选择、功放设计、频率稳定性、系统联调仿真以及法规遵守等多个方面。设计者需要综合考虑各种因素,合理配置和调整各个部分的性能,以实现一个高效、稳定且符合法规要求的小功率调幅AM发射机。
2025-04-17 15:27:17 553KB 调幅发射机
1
Matlab Simulink下的双馈风机变风速最大功率点追踪MPPT控制策略:可调参数,组合与阶跃风速模拟,专业跟踪控制文档详解,Matlab Simulink双馈风机变风速最大功率追踪控制策略详解:自定义参数调整与双闭环控制,组合风速与阶跃风速应用,Matlab simulink双馈风机,变风速最大功率,mppt跟踪控制,不是系统自带,参数可调。 采用双闭环控制,有组合风速,阶跃风速等。 注意,附赠文档说明 ,Matlab; Simulink双馈风机; 变风速最大功率; MPPT跟踪控制; 参数可调; 双闭环控制; 组合风速; 阶跃风速。,Matlab Simulink中的双馈风机控制:变风速最大功率MPPT跟踪及双闭环控制参数优化策略
2025-04-17 11:36:20 10.13MB sass
1
模块化多电平换流器MMC双端MMC-HVDC系统:柔性直流输电技术与最近电平逼近调制实现直流侧电压及功率控制策略,模块化多电平换流器MMC与双端MMC-HVDC柔性直流输电系统:320kV直流侧电压与有功无功控制策略,模块化多电平流器 MMC 双端MMC-HVDC,柔性直流输电系统。 直流侧电压320kV,交流侧线电压有效值166kV,100个子模块,采用最近电平逼近调制。 送端流站控制输出有功功率和无功功率,受端流站控制直流侧电压。 ,模块化多电平换流器(MMC); 双端MMC-HVDC; 柔性直流输电系统; 直流侧电压320kV; 交流侧线电压有效值166kV; 子模块数量100; 最近电平逼近调制; 送端换流站控制; 受端换流站控制。,基于模块化多电平MMC技术的双端MMC-HVDC柔性直流输电系统控制策略研究
2025-04-16 10:40:04 2.7MB kind
1
三电平T型逆变器中点电压平衡控制的模型预测控制及其Matlab Simulink仿真研究,三电平T型逆变器模型预测控制中点电压平衡控制,包括电流预测控制模型、功率预测控制模型,,Matlab simulink仿真(2018a及以上版本) ,三电平T型逆变器; 模型预测控制; 中点电压平衡控制; 电流预测控制模型; 功率预测控制模型; Matlab simulink仿真,基于Matlab Simulink的T型三电平逆变器中点电压平衡的预测控制模型研究 三电平T型逆变器作为一种新型的电力电子转换装置,因其在高压、大功率应用领域的独特优势而受到广泛关注。中点电压平衡是三电平逆变器稳定运行的关键技术之一,其核心在于通过精确控制中点电位,确保逆变器输出电压波形的质量和功率平衡,从而提高系统的稳定性和可靠性。模型预测控制(Model Predictive Control,MPC)是一种先进的控制策略,它通过建立被控对象的数学模型,预测未来的系统行为,并在此基础上优化控制输入,以实现对控制目标的精确跟踪和控制。 在本文研究中,三电平T型逆变器的模型预测控制技术被应用到中点电压平衡控制领域。具体而言,该研究涉及建立精确的电流预测控制模型和功率预测控制模型。电流预测控制模型关注于逆变器输出电流的预测,通过预测电流在不同控制策略下的变化,可以实时调节逆变器的开关状态,以达到减少中点电压波动的目的。而功率预测控制模型则着眼于功率流动的预测,通过调整功率交换来控制中点电压,这在改善电力系统动态响应和提高能效方面具有重要意义。 Matlab Simulink仿真工具被广泛应用于电力电子系统的模拟和分析中,尤其是对于复杂的多变量控制系统。通过Matlab Simulink,研究人员可以在不实际搭建物理系统的情况下,对三电平T型逆变器的模型预测控制策略进行设计、测试和优化。仿真平台可以提供直观的图形化界面,便于理解和分析系统的动态响应,同时,Matlab强大的计算功能能够处理复杂的数学模型和控制算法。 本研究在Matlab Simulink环境中构建了三电平T型逆变器的仿真模型,并对其模型预测控制策略进行了深入研究。仿真结果表明,通过模型预测控制能够有效实现中点电压的稳定,减少电压波动,提高逆变器的整体性能。此外,仿真模型的搭建为后续的硬件实验和实际应用提供了理论基础和实验指导,为逆变器的设计和优化提供了有力的技术支持。 在实际应用中,三电平T型逆变器模型预测控制中点电压平衡技术不仅可以用于工业电力系统,还可以应用于电动汽车充电站、可再生能源发电并网、轨道交通牵引供电系统等。这些领域的广泛应用,展现了模型预测控制在现代电力电子技术中的巨大潜力和广阔前景。 此外,研究中还涉及到了三电平T型逆变器的一些基础概念和技术细节,如逆变器的工作原理、三电平结构的特点、中点电压平衡的原理等,这些基础知识对于理解模型预测控制在中点电压平衡中的应用至关重要。 本文研究通过深入探讨三电平T型逆变器中点电压平衡控制的模型预测控制方法及其在Matlab Simulink中的仿真,为电力电子转换技术的发展贡献了重要的理论和实践成果。研究成果不仅提升了逆变器的技术性能,还为相关领域的科研和工程实践提供了参考和借鉴。
2025-04-14 16:47:57 74KB 哈希算法
1
内容概要:本文详细介绍了基于PR(比例谐振)控制器的并网逆变器设计及其在实现单位功率因数方面的优势。PR控制器相比传统的PI控制器,在跟踪交流信号时能够消除稳态误差,确保电流与电压同相位。文中通过理论分析、数学模型展示以及具体代码实现,解释了PR控制器的工作原理和应用场景。同时探讨了锁相环(PLL)、谐振项带宽调节等关键技术细节,并提供了实验数据验证其优越性能。 适合人群:从事电力电子、自动化控制领域的工程师和技术人员,尤其是关注并网逆变器设计与优化的专业人士。 使用场景及目标:适用于需要提高并网逆变器性能、改善电能质量和增强系统稳定性的场合。目标是通过采用PR控制器实现高精度的电流控制,达到单位功率因数,从而减少能量损失和提高效率。 其他说明:文章不仅涵盖了理论知识,还给出了具体的实现方法和调试技巧,有助于读者更好地理解和应用这一先进技术。
2025-04-14 15:16:50 516KB
1
基于蒙特卡洛模拟的电力系统潮流计算与风光出力不确定性分析,基于蒙特卡洛仿真的电力系统IEEE33节点潮流计算与网损分析:不确定性风光出力的电压和功率影响探究,基于蒙特卡洛概率潮流计算 在IEEE33节点系统中,由于风光出力的不确定性,利用蒙特卡洛生成风速和光照强度得到出力,可得到每个节点的电压和支路功率变化,网损和光照强度。 这段程序主要是进行电力系统潮流计算和蒙特卡洛仿真。下面我会对程序进行详细的分析和解释。 首先,程序开始时进行了一些初始化操作,包括清除变量、定义一些常量和参数。 接下来,程序定义了一个函数`IEEE33`,该函数用于进行33节点电力系统的潮流计算。函数的输入参数是光伏发电功率、风电出力功率、负荷有功功率和负荷无功功率。函数的输出是节点电压和网损。 在主程序中,定义了一些变量和参数,包括光伏发电功率、风电出力功率、负荷有功功率和负荷无功功率的样本数量、基准功率、光伏发电相关参数等。 接下来,程序使用蒙特卡洛方法生成光伏发电功率、风电出力功率和负荷功率的样本。光伏发电功率服从Beta分布,风电出力功率服从Weibull分布,负荷功率服从正态分布。 然后,程序
2025-04-13 00:15:33 1.4MB
1
内容概要:本文详细介绍了利用MATLAB实现VMD-SSA-BiLSTM模型进行光伏功率预测的方法。首先,通过读取并预处理光伏数据,采用VMD(变分模态分解)将原始功率信号分解为多个较为稳定的模态分量。接着,针对每个分量建立BiLSTM模型,并使用SSA(麻雀搜索算法)优化模型的超参数。实验结果显示,相较于传统的BiLSTM模型,VMD-SSA-BiLSTM模型能够显著提高预测精度,特别是在处理功率突变的情况下表现更为出色。此外,文中还提供了关于如何更换分解算法、优化算法以及调整网络结构的具体指导。 适合人群:具有一定MATLAB编程基础和技术背景的研究人员或工程师,尤其是从事新能源领域数据分析工作的专业人士。 使用场景及目标:适用于需要精确预测光伏功率的应用场景,如电网调度和能源管理系统。主要目标是通过先进的信号处理技术和机器学习算法,提升光伏功率预测的准确性,从而更好地应对天气变化带来的不确定性。 其他说明:文中不仅分享了完整的代码实现细节,还讨论了一些常见的工程部署问题及解决方案,如数据预处理、模型训练效率等。对于希望深入理解并应用于实际项目的读者来说,是一份非常有价值的参考资料。
2025-04-11 20:38:20 688KB
1
本设计实现了从算法到FPGA的完整映射,可实时检测5μs脉宽/50μs周期的雷达脉冲,为电子侦察设备提供了高性价比的硬件解决方案。原理分析见博客:https://xiaolv.blog.csdn.net/article/details/146155656?spm=1011.2415.3001.5331
2025-04-11 14:35:16 4.28MB FPGA 信号处理
1
三电平储能变流器 Simulink 仿真,三电平储能变流器Simulink仿真研究:优化Q-U控制与SPWM载波层叠技术实现高效率功率控制,三电平储能变流器 simulink 仿真 基本工况如下: 直流母线电压:1500V 交流电网 :690 10kV 拓扑:二极管钳位型三电平逆变器 功率:300kW逆变,200kW整流 可实现能量的双向流动,整流、逆变均可实现 调制:可选SPWM载波层叠或svpwm调制 包含中点电位平衡,平衡桥臂实现 电压、电流THD<1%符合并网要求 双闭环控制: 外环:Q-U控制,直流电压控制 内环:电流内环控制 储能侧:双向Buck Boost电路,实现功率控制 ,默认 2018 版本 ,三电平储能变流器; Simulink仿真; 直流母线电压; 交流电网; 二极管钳位型三电平逆变器; 功率; 能量双向流动; 调制; 中点电位平衡; 双闭环控制; 储能侧; Buck Boost电路。,三电平储能变流器Simulink仿真工况研究
2025-04-08 14:05:24 5.37MB
1