内容概要:本文深入探讨了Turbo码及其相关信道编码技术,涵盖线性分组码、卷积码、RSC递归系统卷积码、交织、解交织、咬尾卷积编码、打孔删余及Log-Map译码算法等关键概念和技术细节。文中不仅解释了各编码方法的工作原理,还展示了通过调整编码器参数和打孔删余策略实现的不同码率(如1/3、1/5)的灵活变换,并提供了误码率和误包率仿真的实例图表,帮助读者更好地理解和评估Turbo码的实际性能。 适合人群:从事数字通信领域的研究人员、工程师和技术爱好者,尤其是对信道编码技术和Turbo码有浓厚兴趣的专业人士。 使用场景及目标:适用于需要深入了解信道编码原理及其应用的研究项目、工程设计和技术培训。目标是掌握Turbo码的设计思路、编码译码流程及其优化方法,提升通信系统的可靠性和抗噪能力。 其他说明:本文不仅提供理论讲解,还包括具体的代码实现和仿真结果,使读者能够在实践中验证所学知识。
2025-07-31 17:35:05 1.06MB
1
信道编码技术详解:Turbo码及其相关编码、译码原理与实践应用,关于Turbo码与多种信道编码原理及其仿真结果文档解析,信道编码-Turbo码 编码、译码原理文档及代码均有 包含:线性分组码、卷积码、RSC递归系统卷积码、交织、解交织、咬尾卷积编码、打孔删余、Log-Map译码算法等等。 支持1 3、1 5等多种码率灵活变,附上示例误码率、误包率仿真图如下。 ,信道编码; Turbo码; 编码原理; 译码原理; 码率变换; 误码率仿真图; 交织解交织; 咬尾卷积编码; 打孔删余; Log-Map译码算法,Turbo码技术文档:编码原理、译码算法及性能仿真
2025-07-31 17:34:27 412KB paas
1
基于 MATLAB 的 IR-UWB 无线通信信道模型仿真 本论文主要介绍了基于 MATLAB 的 IR-UWB 无线通信信道模型仿真,探讨了超宽带无线通信技术的基础知识,分析了 TH-UWB 信号特点和传播特性,并对比了超宽带信道模型与窄带无线信道的不同。 一、超宽带无线通信技术概述 超宽带无线通信技术是一种全新的短距离无线通信技术,利用极窄脉冲传输数据,具有传输速率高、功耗低、抗多径能力强等许多优点。该技术以其独有的特性正受到通信学术界和产业界乃至军方的重视,并将取得进一步的发展,获得日益广泛的应用。 二、TH-UWB 信号特点和传播特性 TH-UWB 信号是一种特殊的脉宽调制信号,具有很高的带宽和非常短的脉冲宽度。TH-UWB 信号的特点是具有高频率、短脉冲宽度和高频率带宽,能够提供高速率的数据传输和低功耗的特性。 三、超宽带信道模型与窄带无线信道的比较 超宽带信道模型和窄带无线信道模型是两种不同的信道模型。超宽带信道模型主要用于超宽带无线通信系统,而窄带无线信道模型主要用于窄带无线通信系统。两种信道模型的主要区别在于带宽和频率带宽的大小。 四、路径损耗模型和多径衰落模型对 PPM-TH-UWB 超宽带信号传输的影响 路径损耗模型和多径衰落模型是两个重要的信道模型参数,它们对超宽带信号传输的影响非常大。路径损耗模型描述了信号在传输过程中的衰减,而多径衰落模型描述了信号在传输过程中的衰减和多径效应。 五、MATLAB 仿真分析 使用 MATLAB 仿真分析了 PPM-TH-UWB 和 PAM-TH-UWB 信号的时域表达式及其功率谱密度(PSD)。仿真结果表明了 PPM-TH-UWB 和 PAM-TH-UWB 信号的时域表达式和功率谱密度的特点,并且分析了信号在信道模型下的传输特性。 六、修改 S-V 室内信道模型 本文还修改了 S-V 室内信道模型,并对其进行了仿真分析。仿真结果表明了修改后的 S-V 室内信道模型能够更好地模拟超宽带信号在室内信道中的传输特性。 七、结论 本论文对基于 MATLAB 的 IR-UWB 无线通信信道模型仿真进行了深入的研究和分析,得出了丰富的仿真结果和结论。该研究结果可以为超宽带无线通信技术的发展和应用提供有价值的参考。
2025-07-23 10:48:39 1.82MB
1
内容概要:本文档详细介绍了Gnuradio系统平台的各个方面,包括平台代码逻辑结构、模块改写方法、OFDM相关模块的代码实现原理、上手学习指导以及将SISO系统改写为MIMO系统的方法。文档首先阐述了Gnuradio平台的基本逻辑结构,包括从界面到Python代码再到C代码的转换过程。接着讲解了如何通过Python或C++创建全新模块,并深入探讨了如何阅读和修改底层C代码。在OFDM模块实现部分,详细描述了发送端和接收端的模块及其功能。最后,文档提供了从安装Gnuradio到通过小项目上手的指导,并介绍了SISO到MIMO系统的改写方法。 适合人群:具备一定编程基础,尤其是对通信系统和嵌入式开发感兴趣的工程师或研究人员。 使用场景及目标:①理解Gnuradio平台的工作原理,包括代码逻辑结构和模块改写方法;②掌握如何创建和修改模块,特别是OFDM相关模块;③学习如何将SISO系统改写为MIMO系统,包括理论基础和具体实现步骤。 阅读建议:此资源涵盖了从基础到高级的全面内容,建议读者先从安装和基本操作入手,逐步深入到模块改写和OFDM实现原理的学习。对于希望深入了解底层代码的读者,文档提供了详细的C代码阅读和修改指南。
2025-07-22 16:17:34 6.66MB Gnuradio OFDM MIMO 信道估计
1
内容概要:本文详细介绍了线性均衡CTLE(Continuous Time Linear Equalization)的原理及其在高速有线通信中的应用。文章首先阐述了信道带宽与通信速率的关系,强调了CTLE在补偿信道损耗方面的重要性。接着,文章探讨了不同结构的CTLE电路实现方式,包括无源结构、源退化结构、Gm-TIA结构等,并分析了各自的优缺点。随后,文章讲解了几种常见的自适应均衡算法,如基于频谱均衡、基于沿(edge-based)、基于异步降采样的直方分布等,重点在于如何通过算法自动调整CTLE参数以适应不同的信道条件。此外,文章还讨论了CTLE中的非理想因素、噪声特性及失调贡献,指出这些因素对CTLE性能的影响,并提供了相应的解决方案。 适合人群:具备一定电子电路基础,尤其是对高速通信领域感兴趣的工程师和技术人员。 使用场景及目标:①理解CTLE的工作原理及其在高速通信系统中的作用;②掌握不同类型CTLE电路的设计方法,能够根据具体应用场景选择合适的CTLE结构;③学习自适应均衡算法,提高CTLE在不同环境下的适应性和性能优化能力;④了解CTLE中的非理想因素、噪声特性及失调贡献,掌握应对这些问题的技术手段。 其他说明:本文不仅涵盖了CTLE的基础理论,还深入探讨了实际设计中的各种挑战和解决方案,有助于读者全面理解和掌握CTLE技术。文章引用了大量图表和公式,便于读者直观理解复杂的电路设计和算法原理。建议读者在学习过程中结合相关文献和实际项目进行实践,以加深对CTLE的理解和应用能力。
2025-07-04 13:23:55 2.39MB CTLE 自适应均衡算法 噪声特性
1
基于Matlab的通信信号调制识别数据集生成与性能分析代码,自动生成数据集、打标签、绘制训练策略与样本数量对比曲线,支持多种信号参数自定义与瑞利衰落信道模拟。,通信信号调制识别所用数据集生成代码 Matlab自动生成数据集,打标签,绘制不同训练策略和不同训练样本数量的对比曲线图,可以绘制模型在测试集上的虚警率,精确率和平均误差。 可以绘制不同信噪比下测试集各个参数的直方图。 注释非常全 可自动生成任意图片数量的yolo数据集(包含标签坐标信息) 每张图的信号个数 每张图的信号种类 信号的频率 信号的时间长度 信号的信噪比 是否经过瑞利衰落信道 以上的参数都可以根据自己的需求在代码中自行更改。 现代码中已有AM FM 2PSK 2FSK DSB,5种信号。 每张图的信号个数,种类,信噪比,时间长度均是设定范围内随机 可以画出不同训练策略,不同训练样本数量的对比曲线图 可以计算验证集的精确率,虚警率,评论参数误差并且画出曲线图 可以画出各个参数在不同信噪比之下的直方图 ,核心关键词: 1. 通信信号调制识别 2. 数据集生成代码 3. Matlab自动生成 4. 打标签 5. 对比曲线图
2025-07-03 09:48:20 2.53MB 柔性数组
1
射频识别(RFID)技术在无线通信领域中扮演着重要的角色,特别是在UHF频段,它能在几十米的距离内实现数百千比特每秒(kbps)的数据传输速度,这比LF和HF频段的RFID技术具有更远的读取范围和更高的传输速率。UHF RFID阅读器遵循EPC Global C1G2协议,其接收数据速率可高达640 kbps,信号带宽最大不超过1.28 MHz。对于最低40 kbps速率,信号带宽小于250 kHz。因此,设计的信道选择滤波器需要有0.3到1.3 MHz的可调带宽。 信道选择滤波器的主要任务是过滤掉不必要的信号,确保RFID通信的清晰性和稳定性。根据传输掩模规定,相邻信道间的功率差需达到40 dB,这意味着滤波器必须能有效抑制高于本信道40 dB的干扰,同时在两倍频处有超过45 dB的衰减。此外,由于UHF RFID接收机可能面临的多读写器环境和大干扰信号,滤波器必须具备良好的线性度和噪声性能。 文章中采用了运算放大器-RC结构的六阶Chebyshev低通滤波器设计方案。Chebyshev滤波器虽然在通带内的平坦度不及Butterworth滤波器,但其快速的滚降特性有助于实现所需的选择性。滤波器由多个二阶Chebyshev低通滤波节组成,每个二阶滤波节(Biquad)具有特定的传递函数,以实现所需的频率响应。 运算放大器是滤波器设计的关键组件,需要具有至少70 dB的开环增益、大于65 MHz的增益带宽积、65到70 dB的相位裕度以及大于12 V/μs的上升时间。针对输入端的差分信号处理问题,文章提出使用全平衡差动放大器(FBDDA)来构建全差分缓冲器,这解决了单端输入运算放大器的局限性。FBDDA由两级结构组成,包括差分对和共源级,使用PMOS和NMOS管以优化噪声系数和增益。通过调整MOS管的跨导和输出电阻,可以进一步提升运放的性能,并降低噪声。 设计过程中,运算放大器的第一级添加了共模反馈电路,以确保在所有工艺角下都能保持稳定的性能。全差分缓冲器的输出通过负反馈与FBDDA相结合,以实现理想的输入输出关系。通过这样的设计,滤波器能够在满足信道选择性和抑制干扰的同时,确保了良好的线性度和噪声性能。 该设计旨在为UHF RFID阅读器创建一个高效、可靠的信道选择滤波器,以适应复杂无线环境下的高速通信需求。通过六阶Chebyshev滤波器和定制的运算放大器,实现了高性能的信道选择和干扰抑制,确保了RFID系统的稳定性和效率。
2025-05-27 23:02:13 123KB RF|微波
1
移动通信中信道均衡技术的研究与仿真 移动通信中信道均衡技术是移动通信系统中的一项关键技术,旨在消除信道中的干扰,以提高通信质量。本文对移动通信中信道均衡技术的研究与仿真进行了深入的研究和分析。 一、信道均衡技术的重要性 在移动通信系统中,信道干扰是一个非常重要的问题,它会对通信质量产生严重的影响。信道干扰可以分为两类:一类是随机干扰,另一类是确定性的干扰。随机干扰是由于信道中的随机 noise 导致的,而确定性的干扰是由于信道中的多径效应和码间干扰引起的。信道均衡技术的主要目的是消除信道中的干扰,以提高通信质量。 二、信道均衡技术的分类 信道均衡技术可以分为两类:线性均衡和非线性均衡。线性均衡技术是指使用线性滤波器来消除信道中的干扰,而非线性均衡技术是指使用非线性滤波器来消除信道中的干扰。在移动通信系统中,线性均衡技术是最常用的信道均衡技术。 三、自适应均衡器结构 自适应均衡器结构是移动通信系统中的一种非常重要的技术。自适应均衡器可以自动地调整系数,以跟踪信道中的变化。自适应均衡器结构可以分为两类:线性横向均衡器和判决反馈均衡器。线性横向均衡器是指使用线性滤波器来消除信道中的干扰,而判决反馈均衡器是指使用判决反馈算法来消除信道中的干扰。 四、系数调整算法 系数调整算法是自适应均衡器结构中的一个非常重要的组件。系数调整算法可以分为两类:LMS 算法和 CMA 算法。LMS 算法是一种常用的系数调整算法,它可以快速地调整系数,以跟踪信道中的变化。CMA 算法是一种常用的盲均衡算法,它可以盲目地调整系数,以跟踪信道中的变化。 五、 MATLAB 仿真 为了验证自适应均衡器结构和系数调整算法的性能,我们使用 MATLAB 进行了仿真。我们使用线性横向均衡器结构和判决反馈均衡器结构,并使用 LMS 算法和 CMA 算法进行系数调整。仿真结果表明,CMA 算法整体上优于 LMS 算法。 六、结论 移动通信中信道均衡技术是一个非常重要的技术,它可以消除信道中的干扰,以提高通信质量。自适应均衡器结构和系数调整算法是移动通信系统中的一种非常重要的技术。我们的研究结果表明,CMA 算法是一种非常优秀的系数调整算法,它可以盲目地调整系数,以跟踪信道中的变化。
2025-05-26 15:27:05 1.48MB
1
射频识别( RFID)技术在当今无线通信领域应用十分广泛。相对于LF( 120~ 135 kH z)波段和HF( 13. 56MH z) 波段, UHF波段的RFID技术能够在m 级距离上提供数百kb it/s的数据通信, 因而备受关注。目前成功商业应用的UHF 射频识别系统阅读器往往采用分立元件构造, 共同的缺点是体积大、功耗大。随着CMOS工艺技术的发展进步, 如果能够提供基于CMOS工艺的单片阅读器将极大的降低成本, 应用前景也将更为广阔; 而且单片集成的阅读器方案也符合当前多应用便携式终端的发展趋势, 为未来多应用整合提供可能。   本文设计的信道选择滤波器用于UHF RFID阅读器
2025-05-26 03:03:51 853KB
1
标题《无线同时同频全双工中射频信道隔离的影响分析》所涉及的知识点主要集中在无线通信技术中的一种高级模式——同时同频全双工(Co-time Co-frequency Full Duplex,CCFD)技术。该技术允许无线终端在同一频率上同时进行发送和接收操作,大幅度提升了频谱效率,这是当前无线通信系统研究中的一个热门话题。 对全双工技术的理解至关重要。全双工(Full Duplex)指的是数据在两个方向上同时进行传输的能力。在传统的无线通信系统中,为了避免发送和接收信号之间的干扰,通常采用半双工(发送和接收分开进行)或者频分双工(FDD,使用不同的频率进行发送和接收)等方式。而CCFD技术则允许在同一频率上同时进行发送和接收,这样可以节省宝贵的频谱资源,并且理论上能够翻倍通信容量。 然而,CCFD操作的主要实际障碍之一是存在自干扰(Self-Interference),即发射机对自身的接收机造成的干扰。自干扰的存在会严重干扰通信质量。因此,为了更好地抑制自干扰,通常会利用射频(Radio Frequency,RF)反馈链路来提供一个参考的自干扰信号。自干扰消除(Self-Interference Cancellation,SIC)技术成为CCFD技术能否成功应用的关键。 在分析中提到,理想的SIC性能是建立在完美的射频链路隔离上的,但在实际的工程项目中很难实现。射频链路不完美隔离导致的射频信号泄露会对SIC性能造成影响。因此,该论文的重点分析了射频链路隔离对SIC性能的影响,并从数学角度进行了推导和验证。 具体而言,研究首先给出了系统模型的简要描述,然后描述了射频泄露信号,接着利用射频泄露信号估计了自干扰信号。由于射频链路隔离的问题,估计的自干扰信号并不准确,因此文章分析了射频链路隔离对于SIC性能的影响。 在技术层面,文中涉及的关键技术点和概念包括: 1. 同时同频全双工(CCFD)技术:探讨了该技术的工作原理及其在提升频谱效率方面的潜力。 2. 自干扰(Self-Interference)问题:研究了自干扰的成因及其对通信系统性能的影响。 3. 自干扰消除(Self-Interference Cancellation,SIC):讨论了在实际中有效消除自干扰的方法和技术。 4. 射频链路隔离:分析了射频链路隔离不完美时对自干扰消除性能的具体影响。 5. 射频泄露信号:描述了射频泄露的机理及其对系统性能的影响。 6. 数学建模:提出了数学模型来分析和估计自干扰信号,以及射频链路隔离对SIC性能的影响。 论文的作者们来自于不同的研究机构和大学,如成都信息工程大学通信工程学院、电子科技大学国家电子科技重点实验室、中国石化集团公司地球物理重点实验室等,体现了该论文研究的跨学科和国际协作的特点。 这篇论文的发布平台是“国际感知与成像会议”的会议论文集,体现了其在无线通信技术领域的学术价值和应用前景。通过深入分析射频信道隔离对自干扰消除性能的影响,该研究为无线通信领域的工程师和研究者提供了宝贵的数据和理论支持,有助于在实际项目中更有效地实现CCFD技术。 该研究论文不仅对无线通信领域的基础理论有所贡献,更为未来通信设备的设计和优化指明了方向,尤其是在提高频谱使用效率和降低自干扰方面具有重大意义。
2025-05-20 18:36:09 361KB 研究论文
1