ESPCN-TensorFlow TensorFlow(ESPCN)中高效子像素卷积神经网络的TensorFlow实现。 基于网络和本改编的代码。 这个网络可以实现的实时性能 ,同时也超越了质量 。 先决条件 Python 2.7 TensorFlow 脾气暴躁的 Scipy版本> 0.18 用法 在训练每个新模型之前,运行prepare_data.py格式化训练和验证数据培训: python train.py 可以指定时期,学习率,批量大小等: python train.py --epochs 10 --learning_rate 0.0001 --batch_size 32 用于生成: python generate.py 必须指定检查点,低分辨率图像和输出路径python generate.py --checkpoint logdir_2x/train --lr_image
2022-06-24 09:14:54 2.8MB 附件源码 文章源码
1
人工智能-多样化卷积神经网络在图像识别上的研究.pdf
人工智能-低功耗高性能的卷积神经网络硬件加速器设计.pdf
使用Resnext50网络对猫图像进行分类,最终得到正确率91.67%。
2022-06-23 09:11:40 8KB 深度学习 卷积神经网络 pytorch
1
猫狗数据集+基于卷积神经网络实现的猫狗图像分类项目源码+深度学习笔记答辩PPT+大作业文档。 由于数据集中图片数量太多,所以将图片数据打包存在了 cats_and_dogs.zip 里面。 该数据集包含25000张猫狗图像(每个类别各有12500张)。CNN是用这个集合里面的数据进行训练,CNN基于验证集上的性能来调节模型配置(超参数:层数,每层神经元数量等)图像数据输入卷积神经网络之前,应该将数据格式化为经过预处理的浮点数张量。 需要对图像进行向量化处理,同时对标签也要进行向量化处理。 代码位于 5.2_小型数据建立卷积神经网络_猫狗图像分类2.ipynb 中。 开箱即用,方便,内附使用教程
统一手势识别和指尖检测 同时用于手势识别和指尖检测的统一卷积神经网络(CNN)算法。 所提出的算法使用单个网络预测一次手指类别分类的概率和指尖位置输出以进行回归评估。 根据手指类别的概率,可以识别手势,并使用这两个信息对指尖进行定位。 我们没有直接从CNN的完全连接(FC)层中移出指尖位置,而是从完全卷积网络(FCN)中移出了指尖位置集合,然后采用集合平均来使最终的指尖位置输出回归。 更新 包括robust real-time hand detection using yolo进行的robust real-time hand detection using yolo在检测系统的第一阶段获得更好的平滑性能,并且大多数代码已经过清理和重组,以便于使用。 要获取以前的版本,请访问发布。 要求 TensorFlow-GPU == 1.15.0 凯拉斯== 2.2.4 ImgAug == 0.
2022-06-22 16:41:12 1.76MB solo cnn yolo gesture-recognition
1
卷积神经网络,,,,,,,
2022-06-22 11:05:58 625.57MB 深度学习
1
用于mnist数据集识别,将minst数据集和算坏mnist数据集的结果进行对比。
2022-06-22 10:34:38 88KB 贝叶斯卷积神经网络
1
基于卷积神经网络端到端的SAR图像自动目标识别源码。 端到端的SAR自动目标识别:首先从复杂场景中检测出潜在目标,提取包含潜在目标的图像切片,然后将包含目标的图像切片送入分类器,识别出目标类型。 目标检测可以用经典的恒虚警率(CFAR),为了展现全卷积网络对于目标检测仍有良好的效果,选择采用两级全卷积网络,第一级用于目标检测,第二级用于目标分类。 采用MSTAR大场景数据集,尺寸为1476×1784,如下图所示: 由于大场景数据不包含目标图像,所以将许多大小为88×88像素的目标嵌入场景中,因为目标和场景都是同一个机载SAR系统获取的,标准工作条件(SOC)下的SAR图像,成像分辨率都是0.3m,所以可以手动添加目标到大幅场景中,目标切片和添加后的大场景如下图所示:
针对传统机器学习中人工提取特征复杂度高,以及单卷积网络提取特征不充分导致识别率不高的问题,提出了一种基于集成卷积神经网络的面部表情识别新方法。该方法是将VGGNet-19改进后的VGGNet-19GP模型和ResNet-18模型进行集成,构建了集成网络(EnsembleNet)模型。该模型首先在训练集上对单模型进行训练,使单模型达到实验最优,然后在测试集上进行集成测试。在FER2013和CK+数据集上分别获得了73.854%和97.611%的平均准确率。与VGGNet-19GP和ResNet-18模型以及现有方法进行对比,结果表明,基于集成的面部表情分类方法具有分类更加准确和泛化能力更强的优点。
2022-06-19 13:11:57 17.64MB 机器视觉 人脸表情 卷积神经 集成学习
1