地铁供电系统短路试验的仿真分析.pdf
基于NodeMCU的家庭气候监控 该设置包括以下模块: NodeMCU(ESP8266) BME280温湿度大气压力传感器(I2C分线) CCS811 VOC / eCO2传感器(I2C突破) SSD1306 0.96“串行128X64 OLED LCD显示屏(SPI中断) FC-28土壤湿度传感器 有用的链接和积分 我严重依赖所有这些资源,并重复使用了许多资源。 因此,特别感谢以下页面的作者: NodeMCU: : 屏幕信息 与NodeMCU的接口: ://circuitdigest.com/microcontroller-projects/interface-ssd1306-oled-display-with-esp8266-nodemcu 信息: : 规范: : BME280: : CCS811: ://learn.adafruit.com/adafr
2021-10-30 15:18:25 92MB C++
1
目录1.材料准备2.代码实现3.接线 1.材料准备 需要用到的材料:Arduino Uno板,L298N电机驱动模块,两个12V直流减速电机,舵机一个,超声波模块,11.1V锂电池,小车车架等。 因为我后续还要添加其他功能,如加装机械臂和openmv模块,所以选用了功率较大的12V电机。以后还会推出相关的博文。 Uno板: L298N: 12V直流减速电机: 11.1V锂电池 超声波模块+舵机: 2.代码实现 面向对象顾名思义就是把现实中的事务都抽象成为程序设计中的“对象”,其基本思想是一切皆对象,是一种“自下而上”的设计语言,先设计组件,再完成拼装。 首先我们需要写一个arduino
2021-10-30 10:10:09 1.2MB ar arduino du
1
使用msp430单片机实现蓄电池供电的货运机器人货运机器人设计资料 包含源程序原理图等
2021-10-29 19:03:33 2.24MB msp430单片机 货运机器人
当单线总线上挂有多个DS18B20 时,系统对总线上器件的数量和每个器件ROM 码的识别是 通过DS18820 的搜索ROM 命令与算法配合来实现的。
2021-10-29 17:46:48 273KB 寄生供电
1
前言: 近年来云计算、大数据、社交、移动等热点不断冲击和影响着服务器市场,全球服务器市场也因此呈现出持续增长的态势,中国服务器市场成为全球出货量增长的源动力。 在现行电路中,绝大多数的负载工作在12V 以下的电压下,转换系统所面临的挑战都是有关高效而可靠的产生低压/大电流。HVDC也能满足这一条件,用一个BCM :registered: 总线转换器,通过变比K为1/8或1/23的转换产生 380V 到47.5V或11.875V 总线。 Vicor 的BCM总线转换器是一个正弦波振幅转换器(Sine Amplitude Converter TM, 即 SACTM),是一个零电压/零电流开关拓扑的架构,是一个隔离非稳压的DC-DC转换器。 除了输入/输出是直流电压,SAC像一个具有固定输入/输出电压比的交流变压器。SAC可以说实现98%的转换效率,同时由于SAC的软开关技术,开关频率超过了1MHz, 再实现如此高的效率的转换之外还可以在一个ChiP 6123封装中实现K=1/8即400V到50V 1750瓦的转换,功率密度高达3000瓦/立方英寸。 图3. BCM 转换器功率转换架构 根据ETSI规范,336V备份电池正常的工作范围260V-410V,当AC-DC失电情况下,备用电池总线电压因为放电而下降最低有可能为260V/8 即32V,我们需要在ETSI定义的满量程电压范围内提供适配器或均衡器来保持48V的电压轨稳定,这里Vicor提供一个零电压开关架构的升降压(Buck- Boost converter)。这个Buck-Boost转换器实现预稳压功能模块及PRM (Post Regulation Module),在全型VI Chip 32.5mm*22mm*6.7 mm 实现600W,而在与RJ-45以太网插头大小相近的半型尺寸的VI Chip可以实现300W的功率。在这两种情况下,该结构可以保持高效率、并且无缝、动态使用多个供电源,可以是高压整流柜的AC/DC、也可以算是再生能源或备用电池供电。 图4. PRM升降电路架构 根据典型CPU负载与输配电源计算三种不同配电方式的效率, 供电方式分别为AC-DC整流柜和满足ETSI(260V-400V)的高压直流(备用电池)供电方式。利用Vicor的 K=1/8 或K=1/32 的高压BCM可以实现对传统电路的改进,实现高效的高压直流的转换。Vicor ZVS Buck-Boost PRM应对ETSI规范的低压降至260V时中间总线的变换。 图9. 三种方案的功率链的效率分析 Vicor提倡优化48V供电的优化方案,及功率分比架构(Power Factory Architecture)。分比电源架构采用一个新异的功率转换架构,实现典型DC-DC转换器的调节、电压转换功能,并分比成单个元件,然后这些单独元件可以设计成微型的Chip 封装,这些微小的电压稳定专用的我们称预稳压PRM (Post Regulation Module) 和电流倍乘VTM (即电压变压器, Voltage Transformer Module)。 PRM和VTM各司其职被安排在最佳的电源架构中。 图14. VicorFPA架构48V供电方案 基于Intel VR12的规范开始,Vicor提供可以给完整的交钥匙方案。Vicor 的VI Chip 或(SM) ChiP组成一个电源传送链,采用一个独立的VID控制器, 充当CPU和FPA电源链路之间接口的转换器,这反过来利用有机的快速模拟控制回路提供了准确的CPU内核电压。 图15.采用48V-1.x处理器的FPA供电架构 通过这个VR测试板,Vcore 不需要单独的48V-12V转换器,需要注意的是我们在VTM输出端子的也省去体积较大且笨重的的电解电容。 VTM可以尽量靠近CPU的插槽。 图16.采用PI3751(PRM) 和VTM48MP020T88 实现48V-1.x处理器的FPA供电架构 采用Vicor的FPA架构,我们还可以利用VTM的正弦波振幅震荡技术降低对主板的噪声的。传统的多项降压电路需要多个给电感,这些电感的相对ZVS/ZCS的正弦波振幅有更大的噪声干扰。 利用Vicor FPA架构,我们可以无需VID控制器实现ASIC 或通过其他的PMBus/AVS接口实现48V直接到处理器的供电方案。 图19. FPA架构给ASIC 处理器供电 Vicor提供完整的电源解决方案所需的功率元件,并在产品的规划不断创新发展来提高功率密度和提高效率。 注意:附件原理图以及PCB仅供参考,不可用作商业用途!
2021-10-27 20:55:40 13.15MB 电路方案
1
开关电源供电保护技术.docx
2021-10-27 09:02:41 433KB 技术方案
详谈太阳能光伏发电供电系统的组成及工作原理.docx
2021-10-26 11:01:31 307KB 技术方案
5G基站供电方案介绍
2021-10-25 17:01:26 1.22MB 5G基站供电方案介绍 华为5G
此无线供电模块采用高频振荡电路,输入端供电3-6V左右,工作原理是Q1与Q2组成正反馈电路, 通过两只特制线圈与磁芯互感,次级输出约5V左右的直流电. 其中B772为中功率PNP三极管,
2021-10-23 21:58:26 367KB 无线供电 旋转LED 初级线圈
1