通过二分类来比较神经网络模型和逻辑回归模型,有三个代码来进行实现
2021-04-05 17:02:20 5KB 二分类 tensorflow
1
Logistic回归模型——方法与应用(经典书籍)
2021-03-28 22:24:03 242KB 回归、统计
1
matlab软件随机森林法回归模型代码,可直接matlab打开运行!精简版,包括数据导入、模型建立、误差计算、保存模型,绘制对比图的多个功能!
2021-03-19 10:11:19 1KB matlab 随机森林 回归模型
1
论文,pdf版,仅供学习交流使用
2021-03-18 09:21:53 1.8MB 论文
1
代码及论文所用的观测数据
2021-03-18 09:21:30 1KB 观测数据
1
将代码打包为exe可执行文件
2021-03-18 09:21:29 101.52MB exe
1
python源码集锦-多元线性回归模型预测房价
1.使用csv_create.py将data文件中的excel文件转为csv文件并保存在data文件夹中; 2.使用csv_split.py将data中的csv文件分为训练集、测试集保存在hf文件夹中; 3.Housing_test1.py为任务1房地产均价预测,采用线性回归模型,结果保存在results/Housing_LR文件夹中; 4.Housing_test2.py为任务1房地产均价预测,采用K邻近回归模型,结果保存在results/Housing_KNN文件夹中; 5.Housing_test3.py为任务2小区的价值评价,采用线性回归模型,采用填零法或是均值法预处理数据缺失,结果保存在results/Housing_LRplus或者results/Housing_LRplus2文件夹中; 6.Housing_test4.py为任务2小区的价值评价,采用K邻近回归模型,采用填零法或是均值法预处理数据缺失,结果保存在results/Housing_KNNplus或者results/Housing_KNNplus2文件夹中;
1
线性回归餐厅情感分析 目录表 描述 线性回归机器学习模型可预测评论是肯定的还是否定的。 它以86%的准确度正确预测正确的标签。 技术领域 使用以下项目创建项目: python版本:3.9.1 NumPy库版本:1.20.0 熊猫库版本:1.2.2 数据集 制作数据集后,每个功能都是代表餐厅评论中所使用单词的存在或不存在的分类特征(0、1)。 常见词(例如“ the”,“ a”等)未分类。 每行代表一个点(餐厅评论),每列代表其特征(评论中是否使用单词)。 除了评论是肯定的(1)还是否定的(0),每列都是除包含标签的最后一列之外的单独功能。 设置 下载.py文件,training_dataset,validation_dataset和权重文件。 将它们放在单个文件或项目文件中。 运行代码 将以下内容添加到类文件中: x = logistic_regression("train_d
2021-02-26 12:05:53 4.99MB Python
1