一、资源说明: 1. 10分钟生成全文,查重率10%左右 2. 免费千字大纲,二级/三级任意切换 3. 提供文献综述、中英文摘要 4. 所有生成的论文模板只可用作格式参考,不允许抄袭、代写、直接挪用等行为。 二、使用方法: 解压后,直接运行versabot.exe,就可以使用了。
2024-08-29 16:09:36 124.14MB 人工智能 毕业设计
1
标题中的“自己整理的常用元件3D模型库文件(SoildWorksSTEP文件)-电路方案”揭示了这个压缩包内容的核心,它包含了一系列用于电路设计的3D模型。这些模型是作者根据实际需求使用经验精心整理的,主要用于电路方案的设计与模拟,帮助工程师在设计电路时更直观地理解元器件的空间布局。 描述中提到,这些模型来源于网络上的资源,但经过了作者的筛选修改,确保了它们的质量适用性。值得注意的是,这个模型库不包含集成电路(IC)的部分,这意味着用户需要寻找其他来源来获取IC的3D模型,或者使用2D符号来代表IC在电路设计中的位置。 标签“3d模型库”“电路方案”进一步明确了这个资源的用途。3D模型库是一种集中的资源,包含了各种物理元器件的三维几何表示,使得设计师可以在三维空间中预览、排列优化电路设计。而“电路方案”则表明这些模型主要用于电路设计过程,帮助工程师实现从概念到实际产品之间的过渡。 在压缩包子文件的文件名称列表中,我们看到有三个以".png"为扩展名的文件,这些很可能是元件的预览图或截图,供用户在选择模型时参考。另一个名为"Connectors-3D库文件(包括STEP).rar"的文件,是一个连接器的3D模型库,采用了STEP格式。STEP文件是一种国际标准的数据交换格式,广泛用于CAD系统之间,可以被大多数三维建模软件所支持,包括SoildWorks。这意味着用户不仅可以使用SoildWorks打开编辑这些模型,也可以在其他兼容STEP格式的软件中使用它们。 这个压缩包提供了一个实用的3D模型库,专为电路设计者准备,尤其是那些需要处理非集成电路元器件的项目。通过这些3D模型,设计师可以提高设计效率,减少实物原型制作的成本,同时也能更好地进行尺寸空间的规划。对于任何涉及实体电路设计的工程团队来说,这都是一个非常有价值的资源。
2024-08-29 15:06:56 181.65MB 3d模型库 电路方案
1
在Qt框架中,多线程技术是实现高效并发处理的关键,尤其在数据处理用户界面(UI)更新方面。这个实例“qt多线程实例-数据处理UI界面显示”很可能是为了展示如何在不阻塞UI的情况下进行繁重的数据处理任务。 在单线程应用中,如果数据处理任务耗时较长,程序会冻结,用户界面无法响应,这将导致用户体验下降。而通过多线程,我们可以将数据处理UI更新分隔到不同的线程中,使得UI始终保持响应状态,提高应用程序的交互性性能。 1. **QThread类**:Qt中的`QThread`类提供了线程操作的接口。你可以创建一个新的`QThread`对象,并将工作对象(如自定义的处理类)移动到该线程中,以执行特定任务。这样,处理任务将在新线程上运行,而主线程则继续负责UI更新。 2. **信号与槽**:Qt的信号与槽机制是多线程间通信的关键。通过连接信号槽,可以实现在不同线程之间传递信息。例如,数据处理线程完成计算后,可以通过发射一个信号告知UI线程更新界面,而UI线程接收到信号后调用相应的槽函数进行界面更新。 3. **数据共享**:在多线程环境下,数据共享需要特别注意线程安全。可以使用`QMutex`、`QReadWriteLock`等同步工具防止数据竞争。当多个线程尝试同时访问修改同一数据时,这些同步机制可以确保数据的一致性。 4. **事件循环**:每个线程都有自己的事件循环,`QThread`默认没有启动事件循环,因此在子线程中使用`QObject`及其派生类时,需要手动启动事件循环。这通常是通过调用`QThread::exec()`来实现的。 5. **避免UI操作在非主线程中进行**:Qt的GUI组件应在主线程中操作,因为它们不是线程安全的。即使在其他线程中获取了数据,也应确保在主线程中更新UI。可以使用`Qt::QueuedConnection`类型的信号槽连接实现这一目的。 6. **资源管理**:当线程不再需要时,应正确地终止清理。`QThread`提供`quit()``wait()`方法来结束线程并等待其退出。需要注意的是,不要直接删除仍在运行的`QThread`对象,以免导致未定义的行为。 7. **实例分析**:在`multiThreadDemo`这个示例中,可能包含了创建自定义的数据处理类,它继承自`QObject`并在子线程中运行。同时,可能有一个UI类用于显示处理结果,并通过信号槽与数据处理类通信。这个例子将展示如何分离数据处理UI更新,保持应用程序的流畅运行。 通过理解实践这个实例,开发者可以更好地掌握Qt中多线程的使用,从而编写出更加高效的跨线程应用。
2024-08-29 14:53:58 5KB
1
网上很难下载到,分享给需要的:sqlite3odbc.dll 属性 文件版本 1.34455.0,0 产品名称 ODBC Driver for SQLite3 3.43.2 产品版本 0.99991 版权 Copyriglt @2004-2023 大小 942 KB 修改日期 2023-10-23 21:50 made with SQLite 2.8.17, SQLite 3.43.2 直接注册SQLite ODBC Driver使用方法: 注册命令: rundll32 sqlite3odbc.dll,install 卸载命令: rundll32 sqlite3odbc.dll,uninstall
2024-08-29 09:57:06 5.51MB sqlite
1
VLC Media Player是一款开源、跨平台的多媒体播放器,它支持各种媒体格式流协议,深受全球用户喜爱。为了扩展其功能,开发人员可以利用VLC的API接口进行二次开发,实现自定义功能或者集成到自己的应用中。下面将详细探讨VLC的最新API接口及其在开发中的应用。 VLC的API接口主要基于C语言,同时也提供了其他语言(如Python、Java等)的绑定,以便于不同背景的开发者使用。在VLC 1.3.0版本中,这些接口提供了丰富的功能,包括播放控制、流处理、音视频解码、渲染以及网络流媒体等。 1. **播放控制**:API允许开发者精确地控制播放过程,例如播放、暂停、停止、快进、快退、调整音量等。开发者可以通过调用对应的函数,如`libvlc_media_player_play()`来启动播放,`libvlc_media_player_set_position()`来设置播放位置。 2. **媒体加载与管理**:VLC API提供了加载本地文件、URL或整个目录的功能。`libvlc_media_new_path()`用于加载本地文件,`libvlc_media_new_location()`用于加载网络媒体,而`libvlc_media_list_player_new()`则用于管理多个媒体的播放列表。 3. **音视频解码与渲染**:VLC的核心在于其强大的解码库,能处理多种编码格式。API提供了接口如`libvlc_video_set_callbacks()``libvlc_audio_set_callbacks()`,允许开发者自定义解码后的数据处理方式。 4. **事件处理**:VLC API支持事件驱动的编程模型,通过注册回调函数,开发者可以实时响应播放状态变化、错误发生等事件。例如,`libvlc_event_attach()`函数用于订阅事件,`libvlc_event_t`结构体定义了各种可能的事件类型。 5. **网络流处理**:VLC擅长处理各种网络流媒体,如HTTP、RTSP、MMS等。`libvlc_media_player_set_media()`可以设置播放的网络媒体源,`libvlc_media_player_set_nsobject()`则是在iOS上处理网络流的特定方法。 6. **视频输出**:开发者可以自定义视频输出模块,通过`libvlc_video_set_format_callbacks()``libvlc_video_set_callbacks()`接口,实现对视频帧的渲染格式转换。 7. **多语言与字幕支持**:VLC API提供了加载切换字幕的功能,开发者可以通过`libvlc_media_subtitles_set()`来选择字幕文件,`libvlc_media_player_set_subtitle()`来设置当前显示的字幕。 8. **硬件加速**:VLC支持硬件解码渲染,以减轻CPU负担。开发者可以利用API接口选择合适的硬件加速策略。 VLC的API接口为开发者提供了强大的工具,使他们能够构建各种定制化的多媒体解决方案。通过深入理解熟练运用这些接口,开发者可以创建出功能丰富、性能优异的多媒体应用。VLC的帮助文档是学习使用API的关键资源,包含了详细的函数说明、示例代码常见问题解答,对于开发工作来说不可或缺。
2024-08-29 09:12:37 23KB 接口
1
在C#编程中,打开文件文件夹是常见的操作,特别是在开发桌面应用程序时。这篇教程将深入探讨如何在C#中实现这些功能,并提供源码工程以供参考。C#作为一个面向对象的编程语言,提供了丰富的类库来处理文件目录操作。 1. **打开文件** 在C#中,我们通常使用`System.Diagnostics.Process`类来启动外部程序并打开文件。例如,如果想要使用默认的程序打开一个文本文件,可以使用以下代码: ```csharp using System.Diagnostics; // 创建ProcessStartInfo对象 ProcessStartInfo psi = new ProcessStartInfo(); psi.FileName = "file.txt"; // 替换为实际文件路径 psi.UseShellExecute = true; // 使用操作系统shell来打开文件 // 启动进程 Process.Start(psi); ``` 这段代码会调用系统默认关联的应用程序来打开文本文件,如记事本或文本编辑器。 2. **打开文件夹** 打开文件夹的操作与打开文件类似,只是`ProcessStartInfo`的`FileName`属性应设置为目录路径而不是文件路径。例如: ```csharp psi.FileName = "C:\\MyFolder"; // 替换为实际文件夹路径 ``` 这将使用文件资源管理器打开指定的文件夹。 3. **选择文件对话框** 如果需要让用户通过图形界面选择文件,可以使用`OpenFileDialog`类。需要在UI上添加一个按钮,然后为其分配事件处理器: ```csharp using System.Windows.Forms; private void btnOpenFile_Click(object sender, EventArgs e) { OpenFileDialog openFileDialog = new OpenFileDialog(); if (openFileDialog.ShowDialog() == DialogResult.OK) { string filePath = openFileDialog.FileName; // 使用选择的文件路径进行进一步操作 } } ``` 4. **选择文件夹对话框** 类似的,`FolderBrowserDialog`类用于让用户选择一个文件夹: ```csharp private void btnOpenFolder_Click(object sender, EventArgs e) { FolderBrowserDialog folderBrowserDialog = new FolderBrowserDialog(); if (folderBrowserDialog.ShowDialog() == DialogResult.OK) { string folderPath = folderBrowserDialog.SelectedPath; // 使用选择的文件夹路径进行进一步操作 } } ``` 5. **.NET Framework .NET Core的区别** 在.NET Framework中,上述方法可以直接使用,但在.NET Core(尤其是跨平台应用)中,可能需要引用`Microsoft.Win32`命名空间来使用`OpenFileDialog``FolderBrowserDialog`。这是因为这些对话框依赖于Windows API,而在非Windows平台上可能不可用。 6. **源码工程** 提供的源码工程将包含以上示例的完整实现,包括用户界面元素相应的事件处理代码。这将有助于开发者直观地理解如何在实际项目中应用这些功能。 C#提供了强大且易于使用的API来处理文件文件夹操作。无论是简单的打开文件或文件夹,还是通过对话框让用户选择,都有对应的类方法支持。结合提供的源码工程,开发者可以快速掌握并应用这些技术到自己的项目中。
2024-08-29 08:06:32 39KB .net 打开文件 打开文件夹
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-08-28 16:48:18 3.46MB matlab
1
背景是因为找到的按钮在TV端用遥控器操作会有丢失焦点的问题,用代码控制又太麻烦,另外TV端按钮的监听遥控器按下弹起事件好像不好使,因此才又造了一个轮子。 完美兼容移动端TV遥控器,自行设置焦点移动位置避免丢失焦点,同时兼容触摸遥控器按键的按下弹起事件。
2024-08-27 17:50:23 7KB E4A类库
1
UART DUT 介绍、验证功能点提取、UVM 验证代码介绍、Debug 过程联调过程、覆盖率收集等 UART(Universal Asynchronous Receiver-Transmitter)是一种异步全双工串行通信协议,将要传输的数据在串行通信与并行通信之间进行转换。作为把并行输入信号转成串行输出信号的芯片,UART 通常被集成于其他通讯接口的连结上,其工作原理是将数据的二进制位一位一位地进行传输。 DUT(Device Under Test)功能理解:DUT design Spec 如左图所示,DUT 有两种执行方式,一种是对外围设备接收的数据进行串行到并行的转换(RX 方向);另一种是对传输到外围的数据进行并行到串行的转换(TX 方向)。 DUT 模块理解: 1. APB interface:实现接口信号的解码,用于访问状态,配置寄存器,接收,发送数据到 FIFO。 2. transmit FIFO:8 位宽,16 位深,用于存储从 APB interface 中写入的数据,直到数据被传输逻辑读走,该 FIFO 可以被 disable,使其成为单字节寄存器。 3. receive FIFO:12 位宽,16 位深,用于存储上行端接收的数据以及错误位信息,直到数据被 APB 接口读走,该 FIFO 可以被 disable,使其成为单字节寄存器。 4. transmitter:将传输 FIFO 中的数据实现并行到串行的转换。 5. receiver:将对外围设备数据进行串行到并向的转换,同时还会执行溢出,奇偶校验,frame 错误检测中断检测,并将其写入到 receive FIFO。 6. 波特率发生器:包含自由运行的计数器,产生内部 x16 时钟 Baud16 信号。Baud16 是 UART 发射接收控制提供定时信息。 7. interrupt generation:该控制器在每个外围设备的基础上实现另一级别的屏蔽,这样,全局的中断服务例程可以从系统中断服务器中读取。 UARTLCR_H 寄存器内部宽 29 位,但外部通过 AMBA APB 总线通过三次写入寄存器位置 UARTLCR_H、UARTIBRD UARTFBRD 进行访问。UARTLCR_H 定义了传输参数、字长、缓冲区模式、传输停止位数、奇偶校验模式中断生成。 波特率配置:波特率除数是由 16 位整数 6 位小数部分组成的 22 位数字。波特率生成器使用该值来确定位周期。波特率除数 = UARTCLK /(16xBaud Rate)= BRDI + BRDF,其中 BRDI 是整数部分,BRDF 是小数点分隔的小数部分小数 m = integer(BRDF*2^n + 0.5)生成内部时钟启用信号 Baud16,它是一个 UARTCLK 宽脉冲流,平均频率为所需波特率的 16 倍。然后将该信号除以 16,得到传输时钟。 数据传输接收:对于传输,数据被写入传输 FIFO。如果 UART 已启用,则会导致数据帧开始使用 UARTLCR_H 中指定的参数进行传输。数据继续传输,直到传输 FIFO 中没有数据为止。一旦数据写入传输 FIFO(即 FIFO 非空),BUSY 信号就会变高,并在传输数据时保持高电平。只有当传输 FIFO 为空,并且最后一个字符(包括停止位)已从移位寄存器传输时,BUSY 才被否定。即使 UART 可能不再启用,也可以将 BUSY 断言为 HIGH。 当接收器空闲为 idle 时(UARTRXD 连续 1,处于标记状态)且在数据输入上检测到低电平(已接收到起始位)时,接收计数器(时钟由 Baud16 启用)开始运行,并在正常 UART 模式下在该计数器的第八个周期对数据进行采样。如果 UARTRXD 在 Baud16 的第八个周期上仍然处于低位,则起始位有效,否则会检测到错误的起始位并将其忽略。如果起始位有效,则根据数据字符的编程长度,在 Baud16 的每 16 个周期(即一个位周期之后)对连续数据位进行采样。如果启用了奇偶校验模式,则检查奇偶校验位。如果 UARTRXD 高,则确认有效的停止位,否则会发生帧错误。 UART 读写时序: * UART 读写时序图 * UART 数据帧格式 起始位:发送 1 位逻辑 0(低电平),开始传输数据。 数据位:可以是 5~8 位的数据,先发低位,再发高位,一般常见的就是 8 位(1 个字节),其他的如 7 位的 ASCII 码。 校验位:奇偶校验,将数据位加上校验位,1 的位数为偶数(偶校验),1 的位数为奇数(奇校验)。 停止位:停止位是数据传输结束的标志,可以是 1/2 位的逻辑 1(高电平)。 空闲位:空闲时数据线为高电平状态,代表无数据。 UVM 验证代码介绍: * UVM 验证环境搭建 * UVM 验证用例编写 * UVM 验证结果分析 Debug 过程联调过程: * Debug 工具选择 * Debug 过程 * 联调过程 覆盖率收集: * 代码覆盖率收集 * 数据覆盖率收集 * FSM 覆盖率收集 通过对 UART DUT 的介绍、验证功能点提取、UVM 验证代码介绍、Debug 过程联调过程、覆盖率收集等,我们可以更好地了解 UART 模块的工作原理验证方法,并提高我们对 UART 模块的设计验证能力。
2024-08-27 11:02:43 6.21MB uart
1
缺了1~4章,但1~4章是非常基本的东西,可以不用看或看英文版 真的后面难的章节这份文件都有
2024-08-27 07:23:35 42.44MB 数字信息
1