利用numpy库实现的粒子群优化算法
2022-10-09 10:05:01 3KB 粒子群算法
1
针对冷轧企业大批量生产模式与多品种、小批量的市场需求之间存在的矛盾, 建立以合同交货期差异度、工艺路线差异度和调整次数最小化为目标, 同时满足批次重量、出(入)口 宽度、出(入)口厚度、抗拉强度等工艺约束的冷轧合同组批模型, 构建了基于改进粒子群的模糊聚类算法并进行求解. 利用国内某冷轧企业实际生产数据对所提出模型和算法进行了验证, 结果表明, 所提出的方法优于FCM算法, 能够满足企业批量计划的需求.
1
配电网重构是指在满足配电网运行基本约束的前提下,通过改变配电网中一个或多个开关的状态对配电网中一个或多个指标进行优化。 本代码以一种改进二进制粒子群算法为例,进行配电网的重构研究。本代码目标函数为配电网有功网损最小,可自行修改为其他函数。 传统二进制粒子群算法容易陷入局部最优。针对这一问题,本代码从两个方面进行改进:1.初始化和更新粒子时考虑配电网拓扑约束以缩小粒子搜索范围,增强算法收敛能力;2.加入变异的机制。 采用IEEE33节点系统作为算例,算法运行时重构过程通过动画进行动态显示;运行结束后输出重构前后系统节点电压的对比曲线图。
2022-10-07 16:56:00 9KB matlab 重构 配电网 粒子群算法
matlab代码粒子群算法ODEm(使用Matlab的最佳设计实验) ODEm(使用Matlab进行最佳设计实验)是使用Matlab开发的用于计算最佳设计实验的程序。 该程序包括启发式算法,例如粒子群优化(PSO),模拟退火(SA),遗传算法(GA),精确方法,例如内部点方法(IP),有效集方法(AS),顺序二次规划(SQP) ,Nelder Mead(NM)以及精确和启发式方法的杂交。 使用Windows安装程序 您可以在中找到安装程序。 该工具将在您的计算机中安装ODEm作为附件。 如果是第一次安装该应用程序,则将要从Internet下载并安装MATLAB Runtime库(大约500 MB)。 这可能需要几分钟,具体取决于连接的质量。 先决条件 A Windows Operating System. 将问题数据恢复为默认值 如果您使用的是Windows安装程序,并且要将问题数据恢复为默认值,则需要删除Matlab缓存。 要完成此任务,您需要进入目录C:\ Users \“您的计算机用户” \ AppData \ Local \ Temp \“您的计算机用户” \ mcrCache
2022-10-04 17:06:08 4.96MB 系统开源
1
matlab 粒子群算法做规划,做14节点的潮流计算算法
1
为了解决工艺规划与车间调度集成( IPPS)问题,提出了一种改进的蚁群优化( ACO)算 法.通过节点集、有向弧集、无向弧集,构建了一种基于图的 IPPS优化模型.以零件加工时间作为 启发式信息,设计蚂蚁在各节点间转移概率.通过蚂蚁访问图中不同的节点,构建对应的调度方 案.根据不同阶段调度方案的最大完工时间调整各弧段信息素的挥发速度,提高了蚂蚁的搜索效 率.为避免陷入局部收敛,通过重启算法和重置各弧段信息素初值,动态更新各弧段信息素量,以 获得全局最优解.将该算法应用于具体的仿真实例,结果表明该算法能有效
2022-10-01 09:57:23 510KB 自然科学 论文
1
文件含有源码和专题报告,报告全面详细完整,包含绪论、文献探讨、研究方法、研究成果以及结论心得。
2022-09-30 22:04:54 426KB 人工智能 蚁群算法 最短路径规划
1
使用python编写鸭群算法,与粒子群算法进行对比
2022-09-30 17:00:10 466KB 优化算法
针对无线传感网络中数据融合需求的多样性,提出了一种新的簇内数据融合方法。该方法基于信息熵可反映节点数据分布的统计特性,首先对节点内数据并查集的信息熵进行最大寻优、自动确定融合的上下限阈值,完成节点局部数据融合;同时考虑簇内信息分布的空间特性,对簇内二维信息熵进行最大寻优,并由此确定簇内数据融合的阈值、实现冗余数据过滤;最后就该方法与传统的数据融合策略进行了仿真比较。实验结果验证了该方法简单,可有效实现全局数据融合,显著降低节点能耗。
1
提出在支持向量机回归预测中采用粒子群算法优化参数和主成分析降维的方法,通过算例分析表明,此法能够显著提高预测的精度。
2022-09-27 16:52:49 404KB 支持向量机
1