首先我们要对时间序列概念有一个基本的了解时间序列预测大致分为两种一种是单元时间序列预测另一种是多元时间序列预测单元时间序列预测是指只考虑一个时间序列的预测模型。它通常用于预测单一变量的未来值,例如股票价格、销售量等。在单元时间序列预测中,我们需要对历史数据进行分析,确定趋势、季节性和周期性等因素,并使用这些因素来预测未来的值。常见的单元时间序列预测模型有移动平均模型(MA)自回归模型(AR)自回归移动平均模型(ARMA)差分自回归移动平均模型(ARIMA)后期我也会讲一些最新的预测模型包括Informer,TPA-LSTM,ARIMA,XGBOOST,Holt-winter,移动平均法等等一系列关于时间序列预测的模型,包括深度学习和机器学习方向的模型我都会讲,你可以根据需求选取适合你自己的模型进行预测,如果有需要可以+个关注。
2023-12-25 19:58:03 51.93MB 深度学习
1
在网上看到有VBS版本的取硬盘序列号的程序,把它改为PHP版本的,仅适用于windows系统。 取到硬盘序列号,就可以用它生成注册码,实现PHP B/S应用软件的SN啦。。。 本次更新修正了 16 行 $ids 未定义的错误(其实这个错误可以屏蔽的,或有点基础的直接改就是了)。
2023-12-23 09:03:25 457B 硬盘序列号 windows
1
大家好,最近在搞论文所以在研究各种论文的思想,这篇文章给大家带来的是TiDE模型由Goggle在2023.8年发布,其主要的核心思想是:基于多层感知机(MLP)构建的编码器-解码器架构,核心创新在于它结合了线性模型的简洁性和速度优势,同时能有效处理协变量和非线性依赖。论文中号称TiDE在长期时间序列预测基准测试中不仅表现匹敌甚至超越了先前的方法,而且在速度上比最好的基于Transformer的模型快5到10倍。在官方的开源代码中是并没有预测未来数据功能的,因为这种都是学术文章发表论文的时候只看测试集表现。我在自己的框架下给其补上了这一功能同时加上了绘图的功能,非常适合大家发表论文的适合拿来做对比模型。TiDE(时间序列密集编码器)模型是一个基于多层感知机(MLP)的编码器-解码器架构,旨在简化长期时间序列预测。该模型结合了线性模型的简单性和速度,同时能够有效处理协变量和非线性依赖。
2023-12-21 16:41:14 8.12MB 毕业设计 transformer
1
本人为一个项目些的web ActiveX控件,用Visual Studio 2010 c++写的,主要是用来获取客户端电脑MAC地址和CPU序列号!
2023-12-20 08:02:43 52KB ActiveX MAC CUP序列号
1
基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。 可用于做风电功率预测,电力负荷预测等等 标记注释清楚,可直接换数据运行。 代码实现训练与测试精度分析。
2023-12-11 12:30:03 285KB 网络 网络 lstm
1
c# 基于反射、自定义特性、Web Services、xml序列化的应用实例 !
2023-12-08 05:03:08 176KB 反射 自定义属性 WebService Xml序列化
1
基于注意力机制attention结合长短期记忆网络LSTM时间序列预测,LSTM-Attention时间序列预测,单输入单输出模型。 运行环境MATLAB版本为2020b及其以上。 评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高,方便学习和替换数据。
2023-12-01 23:39:28 26KB 网络 网络 matlab lstm
1
基于遗传算法优化BP神经网络(GA-BP)的时间序列预测,matlab代码。 模型评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2023-12-01 15:36:09 29KB 神经网络 matlab
1
大名鼎鼎的delphi第三方界面包rc5.5的安装包,带序列号,完全稳定破解,保证注册成功,实测100台以上机器(发给很多人安装过),绝对保证破解成功。 从此编程界面开发不用愁,不用担心,不用编程,拖拖就是最漂亮的界面了。
2023-11-30 13:24:49 46.03MB rc5.5 delphi控件
1
C#使用WMI获取主机型号、序列号,硬盘型号、序列号、容量,内存容量,MAC地址、IP地址、网关地址。
1