内容概要:本文围绕基于OFDM技术的水下声学通信多径信道图像传输展开研究,重点探讨了在复杂水下环境中利用OFDM(正交频分复用)技术克服多径效应、实现高效图像传输的方法。文中详细介绍了系统模型构建、信道特性分析、OFDM调制解调流程,并通过Matlab代码实现了完整的仿真系统,包括信号调制、循环前缀插入、信道均衡、图像编解码与传输性能评估等关键环节。研究验证了OFDM在抑制水声信道多径干扰方面的有效性,提升了图像传输的可靠性与质量。; 适合人群:具备通信原理、数字信号处理基础,熟悉Matlab编程,从事水基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)下通信、无线通信或图像传输相关研究的研究生及科研人员。; 使用场景及目标:①掌握OFDM在水声通信中的应用机制;②理解多径信道对图像传输的影响及应对策略;③通过Matlab仿真实践提升对通信系统设计与优化的能力; 阅读建议:此资源以Matlab仿真为核心,建议读者结合理论推导与代码实现同步学习,重点关注信道建模与系统抗干扰设计部分,并可扩展至其他复杂环境下的通信系统研究。
2025-12-06 20:33:46 49KB OFDM 多径信道 图像传输 Matlab
1
【Access数据库设计实例】是一个详尽的教程,涵盖了从需求分析到实际系统构建的全过程,主要涉及Access数据库管理系统。在设计计算机学习管理系统时,首先进行了系统需求分析,目的是明确系统功能,例如管理学生基本信息,包括姓名、性别、联系方式和学习内容,支持学生信息的增删改查,以及对学习情况和付款情况的管理。 在硬件和软件环境方面,系统要求的最低配置是奔腾D805 2.66GHz CPU、256M内存和16X DVD光驱,操作系统为Windows XP,数据库管理工具为Access2003,文档处理软件为Word。 系统模块功能包括: 1. 数据浏览模块:允许用户查看数据库中的数据表,了解数据概况。 2. 数据维护模块:提供数据的修改、添加、保存和删除功能,确保数据的完整性和安全性。 3. 数据查询模块:便于用户进行详细的学生和教师信息查询。 4. 数据输出模块:具备信息打印输出的功能。 系统管理部分包括全面系统管理,信息查询,如学生信息、教师信息和收费情况等。在数据库建立过程中,首先新建Access数据库,然后创建表,例如“学员情况表”,包含学号、学员姓名、性别、民族、工作单位和联系电话等字段,每个字段都有对应的数据类型和格式。接着建立“付款情况表”、“教师情况表”和“学费情况表”。 在表设计完成后,需要建立表间的关系,以支持报表、窗体和宏的创建。例如,通过设置外键关联,可以连接不同表的数据。接下来,创建各种查询,如“学习情况查询”、“男学员查询”等,以便按特定条件检索信息。 窗体设计用于用户交互,通过“窗体”数据库对象,创建包含“计算机学习管理系统”标题及“学校简介”、“数据输出”和“信息查询”等功能的窗体。报表的建立则基于数据表,例如“付款情况报表”显示学号、学员姓名、付款情况等信息,方便数据分析。 利用宏实现特定操作,如OpenQuery操作打开查询,简化用户操作流程。宏的建立需要细心设置操作和视图,确保宏的功能正确无误。 Access数据库设计实例提供了从零开始构建计算机学习管理系统的完整步骤,涉及需求分析、系统设计、数据库构建、表和查询的创建、窗体和报表设计,以及宏的编写,为学习和实践Access数据库设计提供了详实的指南。
2025-12-06 20:14:29 1.03MB Access数据库设计
1
本文详细介绍了基于Google Earth Engine(GEE)平台的地表温度单通道算法反演方法。文章以北京市中心为研究区域,利用Landsat 8卫星数据,从数据加载、预处理到地表温度(LST)反演与结果导出的完整流程进行了分步骤解析。核心内容包括研究区域与时间范围定义、Landsat 8数据加载与预处理、NDVI计算、植被覆盖度(FVC)与地表比辐射率计算、亮度温度(BT)计算、地表温度反演(单通道算法)以及结果导出。此外,文章还提供了关键注意事项与优化方向,如数据质量控制、参数优化建议和结果验证方法。该代码流程清晰,可重复性强,适用于学术研究和城市规划等场景。 基于Google Earth Engine(GEE)平台的地表温度反演方法是当前遥感领域的一个重要研究方向。本文详细介绍了地表温度单通道算法反演的完整流程,以北京市中心为研究区域,使用Landsat 8卫星数据作为主要数据源。 研究区域与时间范围的定义是地表温度反演的第一步。在这个过程中,我们需要明确研究的目标区域和时间范围,以便于后续的数据处理和分析。 Landsat 8数据的加载与预处理是地表温度反演的关键步骤。Landsat 8是美国地质调查局和美国宇航局联合开发的地球观测卫星,其携带的传感器可以提供丰富的地表信息。在这个过程中,我们需要对Landsat 8的数据进行加载,包括下载和读取数据。预处理主要包括数据裁剪、去云等步骤,以提高数据的质量。 接下来,NDVI的计算是地表温度反演的重要部分。NDVI(归一化植被指数)是反映地表植被覆盖程度的一个重要指标,其计算需要使用到遥感数据的红光波段和近红外波段。 然后,植被覆盖度(FVC)与地表比辐射率的计算也是地表温度反演的关键步骤。植被覆盖度是反映地表植被覆盖程度的另一个重要指标,其计算需要使用到NDVI。地表比辐射率是反映地表辐射特性的参数,其计算需要使用到植被覆盖度。 亮度温度(BT)的计算是地表温度反演的另一个重要部分。亮度温度是反映地表辐射温度的参数,其计算需要使用到遥感数据的热红外波段。 地表温度反演是基于单通道算法进行的。单通道算法是一种常用的地表温度反演算法,其主要思想是利用遥感数据的热红外波段进行地表温度反演。 在整个地表温度反演过程中,我们还需要注意一些关键事项,如数据质量控制、参数优化建议和结果验证方法。数据质量控制是保证地表温度反演结果准确性的前提,参数优化建议是为了提高地表温度反演的精度,结果验证方法是为了验证地表温度反演结果的准确性。 本文介绍的地表温度反演方法具有流程清晰、可重复性强的特点,适用于学术研究和城市规划等场景。通过使用本文介绍的地表温度反演方法,我们可以获取到高精度的地表温度数据,为城市热岛效应的研究、城市规划和环境保护等提供重要的数据支持。
2025-12-06 20:11:23 6KB Google Earth Engine
1
《MATLAB计算机视觉与深度学习实战》是一本深入探讨如何结合MATLAB进行计算机视觉和深度学习应用的书籍。书中的实例主要围绕基于小波变换的数字水印技术展开,这是一种在图像中嵌入隐藏信息的技术,广泛应用于版权保护、数据安全等领域。小波变换是一种强大的数学工具,它能够对信号进行多尺度分析,从而在不同层次上提取信息。 在MATLAB中,实现小波变换通常使用`wavedec`函数进行分解,`waverec`函数进行重构。小波变换可以用来将图像从空间域转换到小波域,使得高频和低频信息得以分离。在数字水印的嵌入过程中,关键步骤包括选择合适的嵌入位置(通常是图像的高频部分,因为这些部分对人类视觉系统不敏感)和确定合适的嵌入强度,以确保水印的存在不会显著降低图像质量。 深度学习是近年来人工智能领域的热门话题,它主要通过构建多层神经网络模型来学习复杂的特征表示。在本书中,可能会介绍如何使用MATLAB的深度学习工具箱来构建卷积神经网络(CNN)或循环神经网络(RNN),用于图像识别、分类或者水印检测等任务。CNN特别适合处理图像数据,其卷积层能自动学习图像特征,池化层则有助于减少计算量并保持位置信息,而全连接层则负责分类或回归任务。 在MATLAB中,可以使用`alexnet`、`vgg16`等预训练模型作为基础,进行迁移学习,也可以使用`convnet`函数自定义网络结构。对于训练过程,MATLAB提供了`trainNetwork`函数,可以方便地调整超参数,如学习率、批次大小和优化器等。此外,还可以利用`activations`函数查看中间层的激活图,帮助理解模型的学习过程。 深度学习与小波变换的结合可能体现在水印的检测和恢复环节。例如,可以通过训练一个深度学习模型,使其学习如何在小波域中检测和定位水印,甚至预测水印内容。这样的模型可以对图像进行预处理,然后在小波系数中寻找水印的迹象,提高检测的准确性。 《MATLAB计算机视觉与深度学习实战》这本书将理论与实践相结合,通过实际的项目案例,帮助读者掌握如何运用MATLAB进行计算机视觉和深度学习的实验研究,特别是基于小波变换的数字水印技术。通过学习,读者不仅能理解小波变换的原理和应用,还能熟悉深度学习的基本流程,并能够利用MATLAB进行相关算法的开发和实现。
2025-12-06 20:05:57 384KB matlab 深度学习 人工智能
1
内容概要:本文围绕“基于OFDM技术的水下声学通信多径信道图像传输研究”展开,结合Matlab代码实现,重点探讨了正交频分复用(OFDM)技术在复杂水下声学通信环境中的应用。针对水下信道存在的多径效应、高延迟扩展和频率选择性衰落等问题,研究采用OFDM技术提升通信系统的抗干扰能力与传输效率,并实现了图像数据在水下信道中的可靠传输。文中详细介绍了系统模型构建、信道特性分析、OFDM调制解调流程、同步与均衡技术,并通过Matlab仿真验证了该方法在误码率、基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)传输稳定性和图像重建质量等方面的性能表现,具有较强的工程复现价值。; 适合人群:具备通信原理、信号处理基础,熟悉Matlab编程,从事水下通信、无线通信或图像传输相关研究的研究生及科研人员。; 使用场景及目标:①学习OFDM在恶劣信道环境下(如水声信道)的应用设计;②掌握多径信道建模与仿真方法;③实现图像在水下通信系统中的传输与恢复,用于科研复现或项目开发参考; 阅读建议:建议结合提供的Matlab代码逐模块分析,重点关注信道建模、OFDM调制解调及图像传输评估部分,配合仿真实验加深理解,适合边运行代码边研读论文以提升实践与理论结合能力。
1
宇宙一阶相变中气泡的增长涉及非平凡的流体动力学。 因此,对相变前沿的传播的研究通常需要几种近似方法。 经常使用的近似方法是将两个相描述为仅由辐射和真空能组成(所谓的布格状态方程)。 我们表明,在现实模型中,低温阶段的声速通常小于辐射的速度,并且我们研究了这种情况下的流体动力学。 我们特别发现,一种新型的流体动力学解决方案是可能的,这在布袋模型中不会出现。 我们获得了将潜热转移到等离子体的整体运动中的效率的分析结果,该效率是每个相中声速的函数。
2025-12-06 17:33:29 896KB Open Access
1
**广告联盟源码详解** 广告联盟是互联网营销领域中的一个重要组成部分,它允许多个网站共享广告资源,通过统一的平台进行广告展示和效果追踪。在这个背景下,"广告联盟源码"通常指的是用于构建这类平台的软件代码。OpenX,作为本文的重点,是一个功能强大的广告管理系统,尤其适用于中大型网站。 OpenX的特性与优势: 1. **多语言支持**:OpenX支持多种语言,方便全球用户使用,扩大了服务范围。 2. **横幅广告管理**:系统能够轻松管理各种尺寸的横幅广告,为广告主提供多样化的展示形式。 3. **广告主管理**:广告主可以创建和管理自己的广告活动,设置投放策略,如地理位置、时间、频率等。 4. **统计分析**:OpenX提供详尽的统计报告,包括点击率、曝光量、转化率等关键指标,有助于优化广告效果。 5. **实时跟踪**:系统能实时追踪广告表现,确保数据准确无误,为决策提供依据。 6. **电子邮件报告**:系统自动将统计报告通过电子邮件发送给广告主,提高沟通效率。 7. **灵活的计费模式**:支持CPM(每千次展示费用)、CPC(每次点击费用)等多种计费方式,满足不同广告主的需求。 8. **API接口**:提供API接口,方便与其他系统集成,实现自动化管理和扩展功能。 9. **开源免费**:OpenX基于PHP开发,遵循GPLv2开源协议,允许自由修改和分发,降低了使用门槛。 在文件列表中,"www.codejia.com"可能是指获取OpenX源码的网站或其中包含的示例站点。在实际应用中,开发者或网站管理员可以通过下载并安装此源码来搭建自己的广告联盟平台。在部署过程中,需要了解基本的服务器配置、数据库管理和PHP编程知识,以便于定制和优化OpenX以适应特定需求。 OpenX广告管理系统以其强大的功能和开源特性,为构建高效、灵活的广告联盟提供了可靠的技术支持。通过深入理解其源码,开发者不仅可以自定义广告系统,还能学习到广告行业的最佳实践和数据分析方法,为互联网营销提供有力的工具。
2025-12-06 16:01:57 6.54MB 广告联盟 代码 源码
1
本文详细介绍了使用Materials Studio软件计算聚合物玻璃化转变温度(Tg)的步骤。首先,通过构建Amorphous Cell盒子,包括重复单元的复制、均聚物的构造以及AC盒子的设置。其次,进行几何优化,设置相关参数如算法、最大迭代次数等。接着,进行退火处理,设置循环次数、初始温度、升温速率等参数。然后,进行动力学模拟(NVT/NPT),包括温度点的设定和脚本的编写。最后,取NPT结果进行密度或体积的拟合,得到Tg值。文中还提供了相关参考资料,为研究者提供了完整的操作指南。 聚合物玻璃化转变温度(Tg)是指聚合物从硬质玻璃态转变为具有较高流动性的橡胶态时的特定温度点。这一温度对于理解聚合物材料的物理和化学性能至关重要,因为它影响着材料在加工和应用过程中的行为。通过使用先进的计算化学软件如Materials Studio,科学家和工程师能够在分子层面上模拟和预测聚合物的Tg值,这对于节省实验成本和加速新材料的开发具有重要的实际意义。 在Materials Studio软件中,计算聚合物Tg的第一步是构建Amorphous Cell(非晶态单元格)。这涉及到将聚合物的重复单元复制到一个虚拟的三维空间盒子中,形成均聚物结构。此步骤要求用户对聚合物的结构有深入理解,以便正确设置非晶态单元格的参数,如盒子的尺寸和形状,以及聚合物链的排列方式等。 接下来,对建立的非晶态盒子进行几何优化是至关重要的。这一步骤通过计算优化重复单元的原子位置,降低整个系统的内能。几何优化的算法和最大迭代次数等参数对于优化过程的效率和准确性有着直接的影响。一个良好的几何优化可以显著提高后续模拟计算的准确性。 完成几何优化后,需要对非晶态盒子进行退火处理。退火处理是通过模拟加热和冷却过程来调整聚合物的链段运动,从而达到模拟热历史的目的。此步骤中设置循环次数、初始温度和升温速率等参数,是模拟实验中非常关键的部分。合适的退火条件有助于得到更接近真实材料行为的模拟结果。 退火处理之后,就是进行动力学模拟,这通常是在NVT(等数、等体积、等温度)或NPT(等数、等压、等温度)系综下进行。动力学模拟过程中需要设定温度点,并编写相应的模拟脚本。这一步骤通过模拟聚合物在不同温度下的热运动,可以揭示聚合物链运动对温度的依赖性,为后续Tg的计算打下基础。 通过分析NPT系综下的模拟结果,对聚合物的密度或体积随温度变化的关系进行拟合,可以得到Tg值。这一过程通常使用特定的数学模型或软件工具来实现。Tg值的准确获得对于预测和理解聚合物在不同温度下的物理行为至关重要。 本文提供了一个完整的操作指南,不仅详述了计算聚合物Tg的步骤,还提供了参考资料,帮助研究者在操作过程中遇到问题时能够找到解决方案。此外,这种计算方法不仅限于特定的聚合物种类,可以应用于多种不同类型的聚合物材料,具有广泛的适用性。 由于聚合物科学的复杂性,使用Materials Studio软件进行Tg的模拟计算,不仅需要对软件操作有熟练掌握,还需要对聚合物化学和物理学有一定的理解。因此,本项目不仅为材料科学家和工程师提供了有力的工具,同时也为相关领域的研究和教育工作提供了宝贵的资源。
2025-12-06 12:19:21 6KB 软件开发 源码
1
本文详细记录了使用Silvaco的Athena和Atlas工具对BJT双极性晶体管进行仿真的过程。主要内容包括:1. 使用Athena构建含有N+埋层的npn双极性晶体管,通过调整掺杂浓度和尺寸满足特定工艺要求;2. 进行电学仿真,分析共基极和共发射极的输出特性曲线,包括击穿特性和基区宽度调制效应;3. 输出放大工作状态时的电势电场分布及能带图。文章还探讨了在仿真过程中遇到的挑战及解决方案,如调整BC结的扩散/离子注入工艺参数以提高击穿电压,以及如何优化基区宽度调制效应和电流增益。 在本文中,作者详细记录了利用Silvaco公司开发的Athena和Atlas仿真工具,对双极型晶体管(BJT)特性的仿真实验过程。通过Athena工具构建了一个包含N+埋层的npn型BJT,重点关注了如何通过改变掺杂浓度和晶体管结构尺寸来满足特定的工艺要求。掺杂浓度和尺寸是决定晶体管性能的关键因素,因此,调整这些参数对于达到所需的晶体管特性至关重要。 接着,作者进行了电学仿真,分析了BJT在共基极和共发射极配置下的输出特性曲线。在这部分,仿真重点在于理解晶体管的击穿特性和基区宽度调制效应。击穿特性是指晶体管在过高的电压或电流下失去正常工作能力的特性,而基区宽度调制效应是指基区宽度随集电极电流变化而变化的现象,这是BJT的一个重要特性,影响到晶体管的电流增益。通过仿真,可以直观地观察和分析这些特性对BJT性能的影响。 文章进一步介绍了输出放大工作状态下的电势和电场分布,以及能带图的展现。这些信息对于了解BJT内部载流子的行为和电荷分布具有重要作用。仿真结果不仅帮助研究者理解BJT的工作机制,也为设计和优化器件提供了重要的数据支持。 在仿真过程中,作者还讨论了遇到的挑战及相应的解决方案。比如,在仿真中发现击穿电压较低时,通过调整BC结的扩散和离子注入工艺参数可以提高击穿电压。这一过程涉及到对工艺参数的优化,以确保晶体管能够在较高的电压下安全工作。此外,文章还探讨了如何优化基区宽度调制效应和电流增益,包括在仿真模型中调整各种参数,比如掺杂浓度、载流子浓度和载流子寿命等,以实现晶体管性能的提升。 在整个仿真过程中,作者展现了对Silvaco软件包深入的使用能力,以及在解决具体仿真问题时的细致思考和实践。通过这一系列的仿真步骤,不仅展现了BJT的基本特性,还体现了通过仿真进行器件设计和优化的完整流程。 通过本文的研究,我们可以看到,使用高级仿真软件进行电路设计和器件分析,可以大大加速研发过程,同时降低试错成本。Silvaco软件包为微电子器件的设计和分析提供了强大的工具,而本文所展现的仿真实验,正是这一软件能力的一个例证。
2025-12-06 10:23:07 5KB 软件开发 源码
1
本文详细介绍了在Google Earth Engine(GEE)中提取水体边界的方法和步骤。首先,需要选择合适的卫星影像数据,如Landsat或Sentinel系列。其次,通过水体指数法(如NDWI和MNDWI)增强水体信息,并设置合适的阈值提取水体。接着,使用边缘检测算法(如Canny或Sobel)获取精确边界。最后,进行后续处理以优化结果。文章还提供了一个简化的GEE代码示例,展示了如何使用NDWI指数和阈值法提取水体边界。整个过程涉及数据选择、指数计算、阈值提取、边缘检测和后续处理,通过合理调整参数和方法可获得准确的水体边界信息。 在当今世界,遥感技术与地理信息系统(GIS)在环境监测、资源管理和各种地球科学研究领域中发挥着巨大作用。Google Earth Engine(GEE)作为一款强大的云平台工具,为这些研究提供了便捷的途径,尤其在水体边界提取方面,GEE提供了操作方便、计算高效的优势,使得复杂的数据处理过程变得简单快捷。 利用GEE平台获取遥感影像数据是水体边界提取的第一步。通常,研究者倾向于选择多时相、多光谱的卫星数据,例如Landsat或Sentinel系列。这些数据源具有较高的空间分辨率和较短的重访周期,能够满足不同时间尺度的水体变化监测需求。获取数据后,研究者需通过一系列图像处理技术来提取水体信息。 水体指数法是遥感影像水体信息提取的常用方法,它通过特定算法计算每个像元的水体指数值,该值可以用来区分水体和非水体区域。常用的水体指数包括归一化差异水体指数(NDWI)和改进型归一化差异水体指数(MNDWI)。这些指数通过反映水体在近红外波段的低反射率和在绿光波段的高反射率特性,将水体和其他地物有效区分。在实际操作中,研究者需要根据具体应用场景选择合适的水体指数,并通过实验确定最佳阈值来提取水体边界。 提取出的水体边界往往需要进一步的处理来优化结果。边缘检测算法,如Canny或Sobel算法,能够帮助识别和提取水体的轮廓线。这些算法通过分析影像中亮度的梯度变化来确定边界的位置,其效果受到多种因素影响,包括所选算法的特性和影像质量等。 为了确保水体边界的准确性,后续处理工作至关重要。这包括影像预处理、滤波、平滑以及可能的目视检查等。预处理步骤主要是为了减少噪声干扰和改善影像质量,例如进行大气校正、云和云影去除等。滤波和平滑操作有助于消除边缘检测过程中产生的毛刺和凹凸不平。在实际应用中,研究者还需结合实际水体的形态特征和地理知识,对提取结果进行修正和补充,以确保水体边界的准确度。 文章中提到的GEE代码示例,简化了整个提取过程,向用户展示了如何使用NDWI指数和阈值法来提取水体边界。这不仅有助于理解整个提取过程,而且便于用户在实际工作中根据自己的数据进行相应的调整和应用。 此外,考虑到遥感数据的多源性和多样性,软件开发人员也在不断地完善和更新GEE平台的相关软件包。这些软件包集成了各种常用的遥感影像处理功能,使得用户无需从头编写复杂的代码,就能在平台上直接进行水体边界提取等操作。这大大降低了用户的技术门槛,提高了工作效率。 在GEE平台中,提取水体边界是一套系统的工程,它涉及到影像数据的获取、水体指数的计算、阈值的设定、边缘检测算法的应用以及后续处理的优化等多个环节。这些环节相互关联,每个环节的精准度都直接影响着最终结果的准确度。随着遥感技术的不断进步和GEE平台的持续优化,提取水体边界的方法将变得更加高效和精确。
2025-12-05 22:44:50 6KB 软件开发 源码
1